1. GOALS OF THIS LAB

You will learn how to use Maple to compute Partial Derivatives of functions of several variables and to plot simultaneously related objects: Surface graph, directional curves in this surface in the \(x \) or \(y \) directions (intersections of the graph with vertical planes in the \(x \) or \(y \) directions), Tangent Lines in a given direction, Tangent planes, Linear approximation, meaning of the partial derivatives, and to solve related problems.

2. GROUP WORK AND LAB REPORT PRESENTATION

- NUMBER and LABEL all answers and all Graphs. DO NOT HAND IN UNNECESSARY WORK!
Where appropriate, you must explain your reasoning in text or mathematically.
- The lab-report will be graded on its quality and its presentation. See Guide to Lab at my web site and comment in previous labs.
- Work with your partners and be sure that you give the opportunity to each member of the group to participate (establish a rotation for example). Each Lab group should turn in only one report for grading.
- In order to easily save and present your work and Maple internal memory, I strongly recommend that you type in comments and frequently save your work as a Word-file or Maple-file, and after each problem re-enter restart: to empty Maple internal memory, and >with(plots).

3. MAPLE COMMANDS THAT YOU NEED:

Review all previous labs for the commands that you need. So, have them handy with you or get them from the homework web page.

4. INITIALIZATION:

For MAPLE, enter >restart; then >with(plots).

5. REMINDER: SOME USEFUL FORMULAS FROM CHAPTER 14

- The equation of the tangent plane to the surface \(z = f(x, y) \) at the point \(P(a, b, c) \) where \(c = f(a, b) \) is:
 \[
 z = f_x(a, b) (x - a) + f_y(a, b) (y - b) + c
 \]

- The linear approximation of \(f \) near \((a, b) \) is the equation of the tangent plane at the point \(P(a, b, c) \) where \(c = f(a, b) \) is:
 \[
 z = L(x, y) = f_x(a, b) (x - a) + f_y(a, b) (y - b) + c
 \]

- The tangent line in the \(x \) direction at the point \(P(a, b, c) \) is the tangent at \(P(a, b, c) \) of the curve obtained by the intersection of the surface-graph of \(f(x, y) \) and the vertical plane \(y = b \) (see example 2 page 913). Moreover, for this tangent line we have:
 1. a corresponding equation in the plane \(y = b \) is \(z = c + f_x(a, b) (x - a) \)
 2. a direction vector in the space of this tangent line is given by: \(\langle 1, 0, f_x(a, b) \rangle \)
 3. a corresponding parametric equations in the space: \(\langle t + a, b, f_x(a, b) t + c \rangle \)

- Similarly for the tangent line in the \(y \) direction at \(P(a, b, c) \). In particular, a direction vector of this tangent line is given by: \(\langle 0, 1, f_y(a, b) \rangle \) and parametric equations: \(\langle t + a, b, f_y(a, b) t + c \rangle \)

- Review Chapter 13 for parametric equations of a line, the intersection of two surfaces and its parametric equations.
- Go over example 2 from section 14.3 (page 913) and the extra explanations below.
- Read sections 14.3 and 14.4 for more examples.

- **How to find the parametric equations of the curve (parabola C1) of the intersection of the surface** \(z = 4 - x^2 - 2y^2 \) **and the vertical plane** \(y = 1 \)?
 Since it is a space curve, the parametric equation is a vector function \(r(t) = \langle x(t), y(t), z(t) \rangle \).
 Since \(y = 1 \) (we are at this plane) then we have \(y(t) = 1 \).
 In the other hand, if we substitute \(y = 1 \) in the equation of the surface, we get: \(z = 4 - x^2 - 21^2 \) or \(z = 2 - x^2 \). Therefore if we put \(x = t \) we then have \(z = 2 - t^2 \). So \(r(t) = (t, 1, 2 - t^2) \).

- **How to find the equation of the tangent line in the \(x \) direction at the point \(x = 1 \) and \(y = 1 \)?**
 The vector function of this line has the form \(L_x(t) = \langle x(t), y(t), z(t) \rangle \). Since we are dealing with the \(x \)-direction at \(x = 1 \) and \(y = 1 \), then \(y = \text{constant} = 1 \). So no change in \(y \), and the slope of this tangent line is the partial derivative \(f_x(1, 1) = -2 \), in the \(x \)-direction. In particular, a direction vector is \(\langle 1, 0, -2 \rangle \). Since the line passes through \((1,1,1) \), a parametric equation is \(L_x(t) = \langle 1 \cdot t + 1, 0 \cdot t + 1, -2t + 1 \rangle = (t + 1, 1, -2t + 1) \).

- **Use similar method for the \(y \) direction.**

7. Problems to do

Problem 1. **Goal: The tangent plane at a point \(P \) resembles to the surface near that point \(P \).**

We are interested in the function \(z = f(x, y) = \sqrt{x - y} \) near the point \(P(5,1,2) \). Graph the surface and the tangent plane at the point \(P \). Then zoom in until the surface and the tangent plane become indistinguishable. In Maple you zoom-in by changing the domain of \(x \) and \(y \) (in the command) to a smaller one and closer to \(x = 5 \) and \(y = 1 \). You should include 3 plots that show that the more you zoom in, the flatter the graph appears and the more it resembles its tangent plane. See Example 1 section 14.4 for help.

Problem 2. **Goal: The linear approximation is a good local approximation to the values of \(f(x,y) \).**

Find the linear approximation \(L(x,y) \) to the function \(f(x,y) = \ln(x - 3y) \) at \((7,2)\), and use it to approximate \(f(6.9,1.08) \). Illustrate by graphing \(f \) and the tangent plane. For help, read Examples 2 and 3 from section 14.4 (pages 926-927).

Problem 3. **Goal: The tangent lines and the curves of intersection in the \(x \) and \(y \) directions**

The paraboloid \(z = 6 - x - x^2 - 2y^2 \) intersects the the vertical plane \(x = 1 \) in a parabola. Find parametric equations for the tangent line to this parabola at the point \(P(1,2,-4) \). Use Maple to graph the paraboloid, the parabola, and the tangent line on the same screen. You are asked to do something similar to the Example 2 from section 14.3 (pages 913); read this example and the ”extra explanations” about it in the first page.

Problem 4. **Goal: Abstract formula, the meaning the partial derivatives, and the heat equation**

In a study of frost penetration it was found that the temperature \(T \) at time \(t \) at a depth \(x \) can be modeled by the function:

\[
T(x,t) = T_0 + T_1 e^{-\lambda x} \sin(\omega t - \lambda x) \text{ T=temperature, t= time in days, x=depth in feet} \omega = \frac{2\pi}{365} \text{ and } \lambda > 0.
\]

1. Find \(T_x = \frac{\partial T}{\partial x} \). What is its physical significance?
2. Find \(T_t = \frac{\partial T}{\partial t} \). What is its physical significance?
3. Show that \(T \) satisfies the heat equation \(T_t = kT_{xx} \) for a certain constant \(k \).
4. If \(\lambda = 0.2 \), \(T_0 = 0 \), and \(T_1 = 10 \), use Maple to graph \(T(x,y) \). Be sure to choose the domain wisely.