Solution of TEST 5: Math 211-Multivariate Calculus Spring 2003

Problem 1. Using the appropriate coordinates, SET UP, but do not calculate, the triple integral \[\iiint_E \sqrt{x^2 + y^2 + z^2} \, dV \]
where \(E \) is the upper half of the sphere of center \((0,0,0)\) and radius 1.

- **Solution:** With the spherical coordinates we have \(x^2 + y^2 + z^2 = \rho^2 \) and \(dV = \rho^2 \sin \phi d\rho d\theta d\phi \).

 Since the domain is the upper half of the sphere with radius 1, then it can be described by \(0 \leq \rho \leq 1, \, 0 \leq \theta \leq 2\pi \) and \(0 \leq \phi \leq \frac{\pi}{2} \) because it is only the upper half. Therefore

 \[\iiint_E \sqrt{x^2 + y^2 + z^2} \, dV = \int_{\phi=0}^{\phi=\frac{\pi}{2}} \int_{\theta=0}^{\theta=2\pi} \int_{r=0}^{r=1} \rho^3 \sin \phi \, d\rho d\theta d\phi \]

Problem 2. Let \(E \) be the region inside the paraboloid \(z = 3x^2 - 3y^2 = 0 \), which is bounded above by the paraboloid \(z = 16 - x^2 - y^2 \). Use cylindrical coordinates to SET UP, but do not calculate, the triple integral that gives the volume of this region \(E \).

- **Solution:** With the cylindrical coordinates we have \(x^2 + y^2 = \rho^2 \) and \(dV = \rho \, dz \, d\rho \, d\theta \).

 So, in the region \(E \), \(z \) is above the paraboloid \(z = 3x^2 + 3y^2 = 3\rho^2 \) and below the paraboloid \(z = 16 - (x^2 + y^2) = 16 - \rho^2 \).

 To find the corresponding values of \(\rho \), we have the find the intersection of the two surfaces above: \(3\rho^2 = 16 - \rho^2 \Rightarrow 4\rho^2 = 16 \Rightarrow \rho = 2 \). So, inside the circle of radius 2, therefore \(0 \leq \rho \leq 2 \) and \(0 \leq \theta \leq 2\pi \).

Thus the volume of \(E \) is

 \[V = \iiint_E 1 \, dV = \int_{\theta=0}^{\theta=2\pi} \int_{\rho=0}^{\rho=2} \int_{z=3\rho^2}^{z=16-\rho^2} \rho \, dz \, d\rho \, d\theta \]

Problem 3. Use an appropriate change of variables to evaluate \(I = \int_R (6x - 3y) \, dA \), where \(R \) is the region bounded by the lines \(2x - y = 1 \), \(2x = 3 + y \), \(x + y = 1 \) and \(x + y = 2 \).

- **Solution:** The equation of these lines are are equivalent to \(2x - y = 1 \), \(2x = 3 + y \), \(x + y = 1 \) and \(x + y = 2 \). Therefore it is natural to choose:

 \[\begin{align*}
 u &= 2x - y \\
 v &= x + y
 \end{align*} \]

 So

 \[\begin{align*}
 1 \leq u &\leq 3 \text{ and } 1 \leq v \leq 2 \\
 u + v &= 3x \Rightarrow x = \frac{u + v}{3} \Rightarrow J = \left| \begin{array}{cc}
 \frac{px}{\partial u} & \frac{px}{\partial v} \\
 \frac{py}{\partial u} & \frac{py}{\partial v}
 \end{array} \right| = \left| \begin{array}{cc}
 \frac{1}{3} & \frac{1}{3} \\
 \frac{1}{3} & \frac{1}{3}
 \end{array} \right| = \frac{1}{9} + \frac{2}{9} = \frac{1}{3}
 \end{align*} \]

 Thus

 \[I = \int_{R} (3u - 2v) \, dA = \int_{v=1}^{v=2} \int_{u=1}^{u=3} \frac{1}{3} u \, du \, dv = 4 \]

Problem 4. Evaluate the line integral \(\int_C \mathbf{F} \cdot d\mathbf{r} \), where \(\mathbf{F}(x,y,z) = x \mathbf{i} + yz \mathbf{j} + z^2 \mathbf{k} \), and \(C \) consists of two curves \(C_1 \) and \(C_2 \) with: \(C_1 \) is the line segment from \((0,0,0)\) to \((2,0,0)\), and \(C_2 \) is a curve from the point \((2,0,0)\) to \((0,4,2)\) which is represented by the vector function \(\mathbf{r}(t) = (2-t) \mathbf{i} + t^2 \mathbf{j} + t \mathbf{k} \) for \(0 \leq t \leq 2 \).

- **Solution:** \(\int_C \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} \mathbf{F} \cdot d\mathbf{r} + \int_{C_2} \mathbf{F} \cdot d\mathbf{r} \). For each integral we have to express everything in terms of \(t \)

 \(C_1 \) is the line segment from \(A = (0,0,0) \) to \(B = (2,0,0) \). So a representation of \(C_1 \) is given by

 \[r(t) = A + t \overrightarrow{AB} = (0 + t(2 - 0), 0 + t(0 - 0), 0 + t(0 - 0)) = (2t, 0, 0) \text{ for } 0 \leq t \leq 1 \]

 So, \(dr = r'(t) \, dt = (2, 0, 0), \) and \(F = (x, yz, z^2) \Rightarrow F(r(t)) = (2t, 0, 0) \).

 Thus

 \[\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{t=0}^{t=1} (2t, 0, 0) \cdot (2, 0, 0) \, dt = \int_{0}^{1} 4 \, dt = [2t^2]^1_0 = 2 \]

 \(C_2 \) is represented by the vector function \(\mathbf{r}(t) = ((2-t), t^2, t) \) for \(0 \leq t \leq 2 \).

 So, \(dr = r'(t) \, dt = (-1, 2t, 1), \) and \(F = (x, yz, z^2) \Rightarrow F(r(t)) = (2-t, 2t^2, t^2) \).

 Thus

 \[\int_{C_2} \mathbf{F} \cdot d\mathbf{r} = \int_{t=0}^{t=2} (2-t, t^2, t^2) \cdot (-1, 2t, 1) \, dt = \int_{0}^{2} (-2 + t + 2t^4 + t^2) \, dt = [-2t + \frac{t^2}{2} + \frac{2t^5}{5} + \frac{t^3}{3}]^2_0 = 13.46 \]

Conclusion: \(\int_C \mathbf{F} \cdot d\mathbf{r} = 2 + 13.46 = 15.46 \)
Problem 5. Consider the vector field: \(F(x, y) = 3x^2y^2 \mathbf{i} + 2x^3y \mathbf{j} \).

1. Show that \(F \) is a conservative vector field.
2. Find a function \(f(x, y) \) such that \(F = \nabla f \).
3. Evaluate the line integral \(\int_C F \cdot d\mathbf{r} \) where \(C \) is any curve from \((1, 2)\) to \((2, 1)\).

- **Solution:** With \(P = 3x^2y^2 \) and \(Q = 2x^3y \), then \(F = P \mathbf{i} + Q \mathbf{j} \).

1. \(\frac{\partial P}{\partial y} = 6x^2y \) and \(\frac{\partial Q}{\partial x} = 6x^2y \). So \(\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \implies F \) is a conservative vector field.

2. \(\nabla f = F \implies \frac{\partial f}{\partial x} = 3x^2y^2 \) and \(\frac{\partial f}{\partial y} = 2x^3y \).

3. By the Fundamental Theorem for Line Integrals \(\int_C F \cdot d\mathbf{r} = \int_C \nabla f \cdot d\mathbf{r} = f(r(b)) - f(r(a)) \) with \(r(a) = (1, 2) \) is the starting point of the curve and to \(r(b) = (2, 1) \) is the ending point of the curve.

Thus \(\int_C F \cdot d\mathbf{r} = f(2, 1) - f(1, 2) = 2^3 - 1^3 = 2 = 4 \)

Problem 6. Evaluate \(I = \oint_C [x \cos x + e^{\sin x} + 3y] \, dx + [5x + (1 + y^2)^3 + \cos (e^y + y^2)] \, dy \) where \(C \) is the positively-oriented boundary of the upper half disk \(D \) of radius 2 and center \((0, 0)\).

- **Solution:** With \(P = [x \cos x + e^{\sin x} + 3y] \) and \(Q = [5x + (1 + y^2)^3 + \cos (e^y + y^2)] \), and since \(C \) is a simple closed positively oriented curve, then by Green’s Theorem we have:

\[
\oint_C P \, dx + Q \, dy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA = \iint_D (5 - 3) \, dA = 2 \iint_D dA = 2 \text{[area of half disk of radius 2]} = 4\pi
\]