Section 4.8 : Applications to Economics

Homework assignments

Go over examples 1, 2 & 3 in section 4.8 of the textbook
Section 4.8 : 1, 3, 5, 11, 12, 15, 19, 21, 23
The problems below

Definitions and Notations

1. **Cost function** \(C(x) \): The Cost of producing \(x \) units of a certain product.

2. **Marginal Cost** \(C'(x) \): The derivative of \(C(x) \); The cost of producing one more unit after \(x \) units have been produced.

3. **Average Cost** \(c(x) = \frac{C(x)}{x} \): The cost per unit when \(x \) units are produced.

4. **Price or Demand function** \(p(x) \): The price per unit that the company can charge if it sells \(x \) units.

5. **Revenue** \(R(x) = \text{Quantity} \times \text{Price} \): The Revenue from selling \(x \) units.

6. **Marginal Revenue** \(R'(x) \): The derivative of \(R(x) \); the Revenue from selling one more unit after \(x \) units have been sold.

7. **Profit** \(\Pi(x) = R(x) - C(x) \)

Problem 1. It is estimated that the cost of constructing an office building that is \(n \) floors high is \(C(n) = 2n^2 + 500n + 800 \) thousand dollars. How many floors should the building have in order to minimize the average cost per floor? (20 floors)

Problem 2. Find the quantity \(q \) of items which maximizes the profit if it is not possible to produce more than 800 items, and if the total revenue and the total cost (in dollars) are given by

\[R(q) = 50q - 0.03q^2 \quad \text{and} \quad C(q) = 3000 + 20q \]

(500)

Problem 3. A baseball team plays in a stadium that hold 55,000 spectators. With ticket prices at $10, the average attendance had been 27,000. A market survey showed that for each $0.10 decrease in the ticket prices, on the average, the attendance will increase by 300. How should ticket prices be set to maximize revenue? ($9.50)

Problem 4. The regular air fare between Boston and San Francisco is $500. An airline using planes with a capacity of 300 passengers on this route observes that they fly with an average of 180 passengers. Market research tells the airlines’ managers that each $5 fare reduction would attract, on average, 3 more passengers for each flight. How should they set the fare to maximize their revenue? Explain your reasoning to receive credit. ($400)
Solution of Problem 1:
The cost $C(n)$ is given as a function of the number of floors n. Therefore the average cost is given by $c(n) = \frac{C(n)}{n} = \frac{2n^2 + 500n + 800}{n} = 2n + 500 + \frac{800}{n}$. We must then minimize the average cost. We need first to find the critical numbers:

$C'(n) = 2 + 0 - \frac{800}{n^2} = 0 \Rightarrow 2 = \frac{800}{n^2} \Rightarrow 2n^2 = 800 \Rightarrow n^2 = 400 \Rightarrow n = 20$ (because n positive, thus it is the only critical number).

$R(n) = (2 - \frac{800}{n^2})' = -800(x^{-2})' = 1,600x^{-3} \Rightarrow R''(20) = 1,600(20)^{-3} > 0$. By the second derivative test, R has a local minimum at $n = 20$, which is an absolute minimum since it is the only critical number.

The number of floors that will minimize the average cost per floor is then: $n = 20$.

Solution of Problem 2:
Let n = number of times the price of the ticket is reduced by 0.10 dollars, then:

\[
\begin{align*}
\text{price} & = 10 - n \cdot (0.10) = 10 - 0.10n \\
\text{quantity} & = \text{number of spectators} = 27,000 + 300n \\
\end{align*}
\]

Hence $R(n) = (27,000 + 300n)(10 - 0.10n) = 270,000 + 300n - 30n^2$ to maximize.

$R'(n) = 300 - 60n = 0 \Rightarrow n = \frac{300}{60} = 5$ is the only critical number.

$R''(n) = -60 \Rightarrow R''(5) = -60 < 0$. By the second derivative test, R has a local maximum at $n = 5$, which is an absolute maximum since it is the only critical number.

The best ticket prices to maximize the revenue is then: $\$10 - 0.10(5) = 9.50$, with $27,000 + 300(5) = 28,500$ spectators and a revenue of $\$270,750$.

Solution of Problem 3:
Let R = the revenue function = quantity \times price

Let n = number of times the fare is reduced by $\$5$ dollars, then:

\[
\begin{align*}
\text{price} & = 500 - n \cdot (5) = 500 - 5n \\
\text{quantity} & = \text{number of passengers} = 180 + 3n \\
\end{align*}
\]

Hence $R(n) = (180 + 3n)(500 - 5n) = 90,000 + 600n - 15n^2$ to maximize (for $0 \leq n \leq 40$).

$R'(n) = 600 - 30n = 0 \Rightarrow n = \frac{600}{30} = 20$ is the only critical number.

$R''(n) = -30 \Rightarrow R''(20) = -30 < 0$. By the second derivative test, R has a local maximum at $n = 20$, which is an absolute maximum since it is the only critical number.

The best fare to maximize the revenue is then: $\$500 - 5(20) = 400$, with $180 + 3(20) = 240$ passengers and a revenue of $\$96,000$.

Solution of Problem 4: