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Abstract

A theory of homological equivalence of discrete Morse functions is de-
veloped in this paper, extending the work of Ayala et al. [1, 3]. We define
the homological sequence associated with a discrete Morse function on
any finite simplicial complex. This sequence is shown to satisfy specified
desirable properties. These properties allow us to show that homological
sequences may be viewed as lattice walks satisfying certain parameters.
We count the number of discrete Morse functions up to homological equiv-
alence on any collapsible 2-dimensional simplex by constructing discrete
Morse functions satisfying certain properties. The paper concludes with
an example to illustrate our construction.
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1 Introduction

Discrete Morse theory was invented by Robin Forman [6] as an analogue of
“smooth” Morse theory popularized by Milnor [9]. Many classical results in
Morse theory, such as the Morse inequalities, carry over into the discrete setting
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[8]. Applications of discrete Morse theory are vast, ranging from applications
in configuration spaces [10] to computer science search problems [7].

Let f, g be two discrete Morse functions defined on a 1-dimensional simplicial
complex, i.e., a graph. Inspired by Nicolaescu [11], R. Ayala et al. [1] studied
the homological sequence of a discrete Morse function by introducing the notion
of f and g being homologically equivalent, and they counted the number of ex-
cellent discrete Morse functions on all graphs [5]. The authors continued their
study of homological sequences [4, 3], where in the latter paper they defined the
homological sequence on 2-dimensional simplicial complexes. We continue their
work in this paper by defining the homological sequence for all finite simplicial
complexes. With only a slight loss of generality, we work with essential discrete
Morse functions as opposed to excellent discrete Morse functions. We are then
able to prove in Theorem 3.4 that the homological sequence of any essential dis-
crete Morse function exhibits the same kind of behaviour as Ayala et al. proved
in the 1 and 2 dimensional case. From the properties we prove in Theorem 3.4,
it is then immediate that an upper bound for the number of essential discrete
Morse functions, with m = 2k+ 1 critical values, on a given collapsible complex
of dimension n is the number of lattice walks on Zn of length 2k that start
and end at (1, 0, 0, . . . , 0) with each value (a1, a2, . . . , an) in the walk satisfying
ai ≥ 0 for all 2 ≤ i ≤ n and a1 ≥ 1. It was proved by Nicolaescu [11] that for
n = 2, the number of such walks is given by CkCk+1 where Ck = 1

k+1

(
2k
k

)
is the

kth Catalan number. In fact, Nicolaescu derived this computation while count-
ing the number of smooth Morse functions up to homological equivalence on S2.
We develop an alternative formula for this value in Proposition 4.1. We give a
construction in Theorem 4.3 to show that when ∆ is a collapsible 2-dimensional
simplicial complex, we may construct CkCk+1 such discrete Morse functions.
Our paper concludes with an example of the construction in Example 4.4.

2 Preliminaries

Let [n] = {1, 2, 3, . . . , n}. An abstract (finite type) simplicial complex ∆ on [n]
is a collection of subsets of [n] such that

1. If σ ∈ ∆ and τ ⊆ σ, then τ ∈ ∆.

2. {i} ∈ ∆ for every i ∈ [n].

An element σ ∈ ∆ of cardinality i+1 is called an i-dimensional face or an i-face
of ∆. A 0-face is sometimes called a vertex. If σ, τ ∈ ∆ with τ ⊆ σ, then σ is a
face of τ and τ is a coface of σ. The dimension of ∆, denoted dim(∆), is the
maximum of the dimensions of all its faces. We use σ(i) to denote a simplicial
complex of dimension i, and we write τ < σ(i) to denote any subcomplex of σ
of dimension strictly less than i. By convention, the empty set ∅ is the unique
simplex of dimension −1 in every simplicial complex.

Definition 2.1 A discrete Morse function f on ∆ is a function f : ∆→ R such
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that for every p-simplex σ ∈ ∆, we have

|{τ (p−1) < σ : f(τ) ≥ f(σ)}| ≤ 1

and
|{τ (p+1) > σ : f(τ) ≤ f(σ)}| ≤ 1

A p-simplex σ ∈ ∆ is said to be critical with respect to a discrete Morse function
f if

|{τ (p−1) < σ : f(τ) ≥ f(σ)}| = 0

and
|{τ (p+1) > σ : f(τ) ≤ f(σ)}| = 0.

Example 2.2
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The above 2-dimensional simplicial complex is labeled with discrete Morse
function f . The critical vertices are f−1(0), f−1(2) and f−1(3) while the critical
edges are f−1(5), f−1(6), f−1(7), and f−1(10). The 2-simplex with value 8 is
not critical while the 2-simplex with value 11 is critical.

We say that a discrete Morse function f is essential if, given f with m
critical values c0 < c1 < ... < cm−1, f−1(ci) = σi for some unique critical
simplex σi ∈ ∆.

Let c ∈ R. The level subcomplex ∆(c) is the subcomplex of ∆ consisting of
all simplicies τ with f(τ) ≤ c as well as their faces i.e.,

∆(c) =
⋃

f(τ)≤c

⋃
σ≤τ

σ.

For each critical value c0, c1, . . . , cm−1 of f , we are interested in studying the
behaviour of the Betti numbers of the level subcomplexes ∆(c0) ⊂ ∆(c1) ⊂
. . . ⊂ ∆(cm−1). We review simplicial homology and Betti numbers below.

2.1 Homological Sequences

We briefly recall the theory of simplicial homology. Since we are only interested
in the Betti numbers, we use coefficients in R. Let ∆ be a finite-type simplicial
complex on [n]. Denote by Fi(∆) the set of i-dimensional faces of ∆. Let
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σ ∈ Fi(∆). Then to each σ, we associate the symbol eσ to represent a basis
element in the vector space k|Fi(∆)| generated by all the elements of Fi(∆).
The boundary operators ∂i : k

|Fi(∆)| → k|Fi−1(∆)| are defined as follows: let
σ ∈ Fi(∆) and define ∂i(eσ) =

∑
j∈σ

sgn(j, σ)eσ−j where sgn(j, σ) = (−1)i−1 if j

is the ith element of σ when the elements of σ are listed in increasing order. Then
im(∂i+1) ⊆ ker(∂i+1), and we define the ith (unreduced) homology of ∆ to be
the vector space Hi(∆) = ker(∂i)/im(∂i+1) = knul(∂i)−rank(∂i+1). The ith Betti
number of ∆ is defined to be bi(∆) = nul(∂i) − rank(∂i+1). Clearly bj(∆) = 0
for j > n.

Now let f : ∆ → R be an essential discrete Morse function on ∆. To each
level subcomplex ∆(ci), we consider the Betti numbers bi(∆(ci)). The homolog-

ical sequence of f is given by the n+1 maps Bf0 , B
f
1 , . . . , B

f
n : {0, 1, . . . ,m−1} →

N ∪ {0} defined by Bfk (i) = bk(∆(ci)) for all 0 ≤ k ≤ n and 0 ≤ i ≤ m− 1. We

usually write Bk(i) for Bfk (i) when the discrete Morse function f is clear from
the context.

Example 2.3 Consider the discrete Morse function f in Example 2.2. This is
an essential discrete Morse function with critical values 0, 2, 3, 5, 6, 7, 10, and 11.
To find the homological sequence of f , we list the Betti numbers of ∆(0),∆(2),∆(3),∆(5),∆(6),∆(7),∆(10),
and ∆(11). This is summarized in the following table:

B0 : 1 2 3 2 1 1 1 1
B1 : 0 0 0 0 0 1 2 1
B2 : 0 0 0 0 0 0 0 0

Notice that only one value changes when moving from column to column
and that the last column is the homology of the original simplex ∆ even though
∆ 6= ∆(11). These observations and others are true of the homological sequence
of any essential discrete Morse function. We prove this in Theorem 3.4.

Two essential discrete Morse functions f, g : ∆ → R with m critical values
are homologically equivalent if Bfk (i) = Bgk(i) for all 0 ≤ k ≤ m − 1 and 0 ≤ i.
Homologically equivalent discrete Morse functions were first introduced and
studied by Ayala et al. [1]. When ∆ is a 1-dimensional simplicial complex, the
authors showed the following:

Proposition 2.4 [1] If f is an essential discrete Morse function on a 1-dimensional
simplicial complex, then the homological sequence of f satisfies
|B0(i + 1) − B0(i)| = 0, 1 and B1(i + 1) − B1(i) = 0, 1. In addition, for all
i = 0, 1, . . . ,m− 2, exactly one of the following holds:

1. B0(i) = B0(i+ 1)

2. B1(i) = B1(i+ 1).

In Theorem 3.4, we generalize this result to the homological sequence of an
essential discrete Morse function on any finite simplicial complex.
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3 Homological Sequences

In order to generalize Proposition 2.4 the following lemmas are required, the
first of which is a classical result in discrete Morse theory due to Forman.

Lemma 3.1 [6, Theorem 3.3] If a < b are real numbers such that [a, b] contains
no critical values of f , then bi(∆(a)) = bi(∆(b)) for all integers i ≥ 0.

Lemma 3.2 Let σp be a p-dimensional simplex such that σp 6∈ ∆ and ∆ ∪ σp
is a simplicial complex. Write ∆ = ∆∪σp. For every integer i ≥ 0, exactly one
of the following holds:

1. bp(∆)− bp(∆) = 1 and bp−1(∆)− bp−1(∆) = 0

2. bp−1(∆)− bp−1(∆) = −1 and bp(∆)− bp(∆) = 0

Furthermore, bd(∆) = bd(∆) for all d 6= p, p− 1.

Proof Let v1, v2, . . . , vn be the vertices of ∆ and σp ⊆ {v1, v2, . . . , vn} be a
p-dimensional simplex such that σp 6∈ ∆. Let Np denote the set of p-dimensional
faces of ∆. Consider the chain complex

· · · → k|Np+1| ∂p+1−−−→ k|Np| ∂p−→ k|Np−1| ∂p−1−−−→ k|Np−2| → . . . .

The pth and (p − 1)st Betti numbers of ∆ are defined by bp = nul(∂p) −
rank(∂p+1) and bp−1 = nul(∂p−1)− rank(∂p). The corresponding chain complex
for ∆ is given by

· · · → k|Np+1| ∂p+1−−−→ k(|(Np)|+1) ∂p−→ k|Np−1| ∂p−1−−−→ k|Np−2| → . . . .

Since members of ∆ are closed under taking subsets and σp 6∈ ∆, it follows
that there does not exist τ ∈ ∆ with |τ | = p + 1 such that σp ⊆ τ . Thus the
additional row of ∂p+1 corresponding to σp is the zero row, and rank(∂p+1) =
rank(∂p+1).

In addition, bp(∆) = nul(∂p) − rank(∂p+1) and bp−1(∆) = nul(∂p−1) −
rank(∂p). Now ∂p is an |Np−1|×|Np| matrix and ∂p is an |Np−1|×(|Np|+1) ma-
trix. Since ∂p has one more column than ∂p, we know that either rank(∂p)+1 =
rank(∂p) or rank(∂p) = rank(∂p).

Case 1: rank(∂p) + 1 = rank(∂p).

We have bp−1(∆)−bp−1(∆) = nul(∂p−1)−rank(∂p)−nul(∂p−1)+rank(∂p) =
rank(∂p) − rank(∂p) = −1. Now we show that bp = bp. By the Rank-
Nullity theorem, rank(∂p)+nul(∂p) = Np and rank(∂p)+nul(∂p) = Np+1
so nul(∂p) = nul(∂p). Thus bp(∆) − bp(∆) = nul(∂p) − rank(∂p+1) −
nul(∂p) + rank(∂p+1) = 0.
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Case 2: rank(∂p) = rank(∂p).

We have bp−1(∆)−bp−1(∆) = nul(∂p−1)−rank(∂p)−nul(∂p−1)+rank(∂p) =
rank(∂p)− rank(∂p) = 0. Again, by the Rank-Nullity theorem, rank(∂p)+
nul(∂p) = Np and rank(∂p) + nul(∂p) = Np + 1 so, nul(∂p) + 1 = nul(∂p).
Thus we have bp(∆)−bp(∆) = nul(∂p)−rank(∂p+1)−nul(∂p)+rank(∂p+1) =
nul(∂p)− nul(∂p) = 1.

Hence, adding a p-simplex will either decrease bp−1 or increase bp while
leaving the other constant. It is clear that bd(∆) = bd(∆) for all d 6= p, p− 1. 2

Lemma 3.3 Let ∆ be a simplicial complex with essential discrete Morse func-
tion f and suppose that f has global minimum a. Then there is a unique 0-
critical simplex σ such that f(σ) = a.

Proof By Lemma 3.1, ∆(x) = ∅ for all x < a. Since f is essential, there exists a
unique simplex σ such that f(σ) = a. Thus ∆(a) = {σ} and |∆(a)|−|∆(x)| = 1
so that σ must be a 0-dimensional critical simplex. 2

We are now ready to prove our main result. This result can be interpreted
as saying that the homological sequence of any essential discrete Morse function
is “well-behaved” in the sense that only one Betti number can change for each
subsequent level subcomplex by a value of ±1.

Theorem 3.4 Let f be an essential discrete Morse function on a connected
n-dimensional simplicial complex ∆ with m critical values c0, c1, . . . , cm. Then,
each of the following holds:

1. B0(0) = B0(m− 1) = 1 and Bd(0) = 0 for all d ∈ Z≥1

2. For all 0 ≤ i < m − 1, |Bd(i + 1) − Bd(i)| = 0 or 1 whenever 0 ≤ d ≤ n
and Bd(i) = 0 whenever d ≥ n+ 1

3. Bd(m− 1) = bd(∆)

4. For each i = 0, 1, . . . ,m− 2 either:

(a) Bp−1(i) = Bp−1(i+ 1)

(b) Bp(i) = Bp(i+ 1)

where p = dim(f−1(ci)). Furthermore Bd(i) = Bd(i + 1) for any d 6=
p, p− 1 and 1 ≤ d ≤ n

Proof We proceed in order. For 1, choose y ∈ N such that ∆(cm−1 + y) = ∆.
By Lemma 3.1, b0(∆cm−1) = b0(∆(cm−1 + y)) = b0(∆). Since ∆ is connected
b0(∆(cm−1)) = B0(m− 1) = 1. By the Lemma 3.3, ∆(0) = σ0. Thus Bd(0) = 0
for all d ∈ Z≥1. This proves the first assertion.

For 2, we note that by Lemma 3.1, bd(∆(ci)) = bd(∆(x)) for any x ∈
[ci, ci+1). Since f is essential, there exists ε > 0 such that ∆(ci+1) = ∆(ci+1 −
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ε) ∪ σp where σp is a critical p-simplex such that f(σp) = ci+1. We now apply
Lemma 3.2 for each of the following cases: if p = d then Bd(i+1)−Bd(i) = 0 or
1. If p = d+1 then Bd(i+1)−B(i) = −1 or 0. Otherwise, Bd(i+1)−Bd(i) = 0.
This proves 2.

For 3, observe that m − 1 is the maximum critical value. By Lemma 3.1,
Bd is constant for all values x > cm−1. Since there is a y ∈ N such that
∆(cm−1 + y) = ∆, we see that Bd(m− 1) = bd(∆).

Finally, we apply Lemma 3.1 to see that bd(∆(ci)) = bd(∆(x)) for all x ∈
[ci, ci+1). Since f is essential, there exists ε > 0 such that ∆(ci+1) = ∆(ci+1 −
ε) ∪ σp as in the proof of 2. Observe that, by Lemma 3.2, the addition of a
p-dimensional simplex will change either Bp or Bp−1, leaving all others values
fixed. 2

4 Counting Discrete Morse Functions

It is easily seen that the result of Theorem 3.4 can be viewed as walks of
length 2k in the lattice Zn that start and end at (1, 0, 0, . . . , 0) with each value
(a1, a2, . . . , an) in the walk satisfying ai ≥ 0 for all 2 ≤ i ≤ n and a1 ≥ 1. If ∆ is
a 1-dimensional and collapsible (i.e., a tree), then Ayala et al.’s 2009 result [1,
Theorem 6.1] shows that the number of homological sequences with m = 2k+ 1
critical values is given by the kth Catalan number.

We investigate the case where ∆ is a 2-dimensional collapsible simplicial
complex. In this case, we are interested in counting the number of lattice walks
of length 2k in Z2 starting and ending at (1, 0) with first coordinate positive
and second coordinate nonnegative. This value has been computed explicitly
by Nicolaescu [11] to be CkCk+1, the product of consecutive Catalan numbers.
We obtain an alternative formula for this value.

Proposition 4.1 Let f be an essential discrete Morse function on a 2-dimensional
collapsible complex with m = 2k + 1 critical values. Let j = 2` for ` ∈ N ∪ {0}
with j ≤ 2k. The number of homology equivalence classes of essential discrete
morse functions is

k∑
`=0

(
m− 1

j

)
Ck−`C`.

Proof It is known for a tree that the number of homological equivalence classes
is the kth Catalan number, Ck = 1

k+1

(
2k
k

)
. By the Theorem 3.4, B0(0) =

B0(m − 1) = 1 and B1(0) = B1(m − 1) = 0. Thus every created cycle must
eventually be covered, causing the number of times B1 changes (increases or
decreases) to be even. We denote this number by j = 2`. Next observe that if
B1 changes, B0 remains constant by Theorem 3.4.

Thus we are left with m − 1 positions to place j changes in B1 giving us(
m−1
j

)
. Observe that the B1 sequence exhibits a walk of length Z≥0 starting

and ending at 0 with ` steps of size ±1.
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Recall that when B1 changes B0 remains constant. Thus there are j fewer
critical values left to B0. We have m− j = 2(k − l) + 1 so that there are Ck−l
arrangements for B0.

Thus the total number of possible sequences for m critical values is

k∑
`=0

(
m− 1

j

)
Ck−`C`

which is what we desired to show. 2

Corollary 4.2 CkCk+1 =
k∑̀
=0

(
m−1
j

)
Ck−`C`

We now show that the above upper bound is the actual number of essential
discrete Morse functions on a collapsible 2-dimensional simplicial complex up
to homological equivalence. As noted, for m = 2k + 1 critical values, this
yields CkCk+1. Nicolaescu computed this value to count the number of smooth
Morse functions on the 2-sphere S2 up to homological equivalence. Hence the
Theorem below provides another nice symmetry between smooth and discrete
Morse theory. Ayala et al. [3, Theorem 5.1] give a sketch of a proof which
counts the number of essential discrete Morse functions on all compact orientable
surfaces. Below we give the full details of an alternative proof using those same
authors’ construction of essential discrete Morse functions on any 1-dimensional
simplicial complex [5, Theorem 4.3]. The technical hypothesis about ∆1 is
to ensure that we can apply Ayala’s construction to obtain any homological
sequence (See introductory remarks of the proof of Theorem 4.4.3 [5]).

Theorem 4.3 Let ∆ be a collapsible 2-dimensional simplicial complex such that
∆1 contains at least one vertex of degree 1 or that ∆1 is a non-trivial bridgeless
graph. Then the number of essential discrete Morse functions with m = 2k + 1
critical elements on ∆ is CkCk+1.

Proof By Corollary 4.2, we know that the number of essential discrete Morse
functions on ∆ with m = 2k + 1 critical values is bounded above by CkCk+1.
Hence, given a homological sequence, we construct an essential discrete Morse
function with m = 2k + 1 critical values. Observe that for some 0 ≤ ` ≤ k,
there are 2` nonzero entries in the row B1 since each time B1 increases it must
eventually decrease to end at 0. By Theorem 3.4, any such homological sequence
on ∆ is of the form

B0 : n0 n1 . . . nt1 nt1 nt1+1 . . . nt2` nt2` nt2`+1
. . . 1

B1 : 0 0 . . . 0 1 1 . . . 1 0 0 . . . 0.

We will construct an essential discrete Morse function g on ∆ with the above
homological sequence. This is accomplished by constructing an essential discrete
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Morse function on ∆1, the 1-skeleton of ∆. The homological sequence we wish
to place on ∆1 is based on the given homological sequence.

We begin by subdividing ∆ as necessary to obtain enough simplicies. Remove
the 2-simplicies of ∆ to obtain ∆1. The resulting skeleton is a graph with
b := b1(∆1) independent cycles. By Ayala et al. [3, Theorem 5.1] there is
an essential discrete Morse function f on ∆1 with the following homological
sequence:

B0 : n0 n0 n0 n0 . . . n0 n1 n2 . . . nt1 nt1 . . . 1
B1 : 0 1 2 3 . . . b− ` b− ` b− ` . . . b− ` b− `+ 1 . . . b.

Since ∆ is collapsible, each removed 2-simplex τ may be associated with
a critical edge bounding τ . The above sequence is described as follows: start
with the desired homological sequence and insert b − ` holes after the initial
critical value. Then the B0 sequence is shifted b− ` entries to the right, and the
corresponding B1 value is b− ` as opposed to 0. The first time B1 increases in
the original sequence is at nt1 . Our new sequence also has B1 increase after nt1
except that it increases from b − ` to b − ` + 1, whereas the original sequence
increases from 0 to 1 at this stage. Continue in this manner until the first time
B1 decreases in the original sequence. This step is ignored in the new sequence
(we will return to this below when constructing g).

We define g = f on ∆1. We will next insert the 2-simplicies back into ∆1 and
label them so that the sequence on ∆1 is transformed into the desired sequence
on ∆. This is accomplished as follows: as stated above, there is a one-to-one
correspondence between the first b − ` critical edges and a 2-simplex that the
edges bound. Call these critical edges e1, e2, . . . , eb−` and their corresponding
2-simplicies d1, d2, . . . , db−`. Define g(di) = f(ei), 1 ≤ i ≤ b − `. Since f
is essential, the critical edge ei is the only simplex with value f(ei). Hence,
defining g(fi) = f(ei) will still yield a discrete Morse function, but now each of
the ei is not critical under the function g. In addition, each di is non-critical.

Now let tj be the first index in the original sequence such that B1(tj) −
B1(tj+1) = 1. Choose any 2-simplex that has not yet been labeled and whose
boundary is in the current level subcomplex. Label this simplex so that it has a
value greater than the maximum of all values of the current level subcomplex,
but less than the values on f(∆1) that are not yet in the current level subcom-
plex. This will ensure that the 2-simplex is critical, and thus B1 will decrease
exactly when desired. Repeat this step as necessary.

The resulting discrete Morse function g on ∆ will have the given homological
sequence. 2

4.1 Example

We give an example of the construction in Theorem 4.3.

Example 4.4 Let ∆ be the collapsible 2-dimensional complex given by the fol-
lowing figure:
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We will construct an essential discrete Morse function on ∆ with the follow-
ing homological sequence:

B0 1 2 1 2 2 3 3 2 1 1 1
B1 0 0 0 0 1 1 0 0 0 1 0.

Use the result of Ayala et al. [5, Theorem 4.3] to construct an essential
discrete Morse function f on ∆1 with the following homological sequence:

B0 1 1 1 1 1 1 2 1 2 2 3 2 1 1
B1 0 1 2 3 4 5 5 5 5 6 6 6 6 7.

Such a discrete Morse function is given below.

1 2 3 4

1 6 2 7 4 8

3 9

4

4 10 14 19

18

5 12 16

17

0 1 2 3
4

1
2

4

3 4 18

15

4 5 11 13
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Now pick five 2-simplicies and label them with the maximum value of their
boundary edge value.

1 2 3 4

1 6 2 7 4 8

3 9

4

4 10 14 19

18

5 12 16

17

0 1 2 3
4

1
2

4

3 4 18

15

4 5 11 13

6 7 8

9

10

The remaining two 2-simplicies are labeled slightly greater than the maxi-
mum of all the simplicies in the current level subcomplex, where the current
level subcomplex is determined by when B1 decreases in our original homologi-
cal sequence. Hence the discrete Morse function g is given as follows:

1 2 3 4

1 6 2 7 4 8

3 9

4

4 10 14 19

18

5 12 16

17

0 1 2 3
4

1
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6 7 8
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20
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