
Distributed EDLSI, BM25, and Power Norm at TREC 2008
April Kontostathis, Department of Mathematics and Computer Science,

Ursinus College, Collegeville PA 19426, akontostathis@ursinus.edu

Andrew Lilly, Department of Computer Science,
University of Saskatchewan, Saskatoon, SK, S7N 5C9, abl657@mail.usask.ca

Raymond J. Spiteri, Department of Computer Science,
University of Saskatchewan, Saskatoon, SK, S7N 5C9, spiteri@cs.usask.ca

✦

Abstract —This paper describes our participation in the TREC
Legal competition in 2008. Our first set of experiments involved
the use of Latent Semantic Indexing (LSI) with a small number
of dimensions, a technique we refer to as Essential Dimensions
of Latent Semantic Indexing (EDLSI). Because the experimental
dataset is large, we designed a distributed version of EDLSI to
use for our submitted runs. We submitted two runs using dis-
tributed EDLSI, one with k = 10 and another with k = 41, where
k is the dimensionality reduction parameter for LSI. We also
submitted a traditional vector space baseline for comparison with
the EDLSI results. This article describes our experimental design
and the results of these experiments. We find that EDLSI clearly
outperforms traditional vector space retrieval using a variety of
TREC reporting metrics.

We also describe experiments that were designed as a fol-
lowup to our TREC Legal 2007 submission. These experiments
test weighting and normalization schemes as well as techniques
for relevance feedback. Our primary intent was to compare the
BM25 weighting scheme to our power normalization technique.
BM25 outperformed all of our other submissions on the competi-
tion metric (F1 at K) for both the ad hoc and relevance feedback
tasks, but Power normalization outperformed BM25 in our ad hoc
experiments when the 2007 metric (estimated recall at B) was
used for comparison.

1 INTRODUCTION

In the 2007 TREC Legal competition, our submissions
were designed to test the effectiveness of a variety of
simple normalization schemes on a large dataset. We
had planned a comparison with some of the state-of-the-
art systems for weighting and normalization, but these
activities were not completed in time for the TREC
2007 submissions. Thus, in 2008 one of our primary
goals was to compare power normalization [9] to the
BM25 weighting scheme [13]. We submitted five ad hoc
runs and six relevance feedback runs that compare these
algorithms.

We have extensive experience with Latent Semantic
Indexing (LSI) [5], [7], [8], [15], [16], [11]. Thus we
were also eager to see how LSI would work on the IIT
Complex Document Information Processing (IIT CDIP)
test collection, which contains approximately 7 million
documents (57 GB of uncompressed text). Specifically,
we wanted to see if the Essential Dimensions of Latent
Semantic Indexing (EDLSI) [5] approach would scale to
this large collection and what the optimalk value would
be. We have used SVD updating, folding-in, and folding-
up in previous work [15], [16], [11], and it appeared
that these techniques would be useful for handling a
collection of this size.

This year, teams participating in the TREC Legal task
were required to indicate theK andKh value for each
query.K is the threshold at which the system believes
the competing demands of recall and precision are best
balanced (using the F1@K measure shown in Equation
1), and Kh is the corresponding threshold for highly
relevant documents. Assessors assigned a value of highly
relevant when judging documents for the first time this
year. Much of our preparatory work for the competition
centered on determining appropriate ways to setK and
Kh for each query.

F1@K = (2 ∗ P@K ∗ R@K)/(P@K + R@K) (1)

This paper is organized as follows: Sections 2, 3, and
4 describe the methodologies used. Section 5 discusses
our approach for finding the optimalK andKh values
for each query. Section 6 describes our experiments and
results when EDLSI was used in the ad hoc task. Section
7 details our power normalization and BM25 ad hoc
experiments and results. Section 8 discusses our rele-
vance feedback submissions with power normalization

Fig. 1. Truncation of SVD for LSI

A k = T
S D

T

T r u n c a t e d
T e r m b y D o c u m e n t

T e r m b y D i m e n s i o n S i n g u l a r V a l u e s D o c u m e n t b y D i m e n s i o n

k

k

k

k

and BM25. Section 9 presents our conclusions.

2 ESSENTIAL DIMENSIONS OF LSI
In this section we first describe LSI. We then discuss
EDLSI and how it improves upon LSI. We also detail
the distributed EDLSI approach we used for our TREC
Legal 2008 submissions.

2.1 Latent Semantic Indexing

LSI is a well-known approach to information retrieval
that is believed to reduce the problems associated with
polysemy and synonymy [3]. At the heart of LSI is a
matrix factorization, thesingular value decomposition
(SVD), which is used to express thet × d term-by-
document matrix as a product of three matrices, a term
component (T), a “diagonal” matrix of nonnegative sin-
gular values in non-increasing order (S), and a document
component (D). This is shown pictorially in Figure 1,
taken from [2]. The original term-by-document matrix
A is then given byA = TSDT . In LSI, these matrices
are truncated tok ≪ min(t, d) dimensions by zeroing
elements in the singular value matrix S. In practice, fast
algorithms exist to compute only the requiredk dominant
singular values and the associated vectors in T and D [1].

The primary problem with LSI is that the optimal
number of dimensionsk to use for truncation is depen-
dent upon the collection [4], [10]. Furthermore, as shown
in [8], LSI does not always outperform traditional vector
space retrieval, especially on large collections.

2.2 EDLSI

To address this problem, Kontostathis developed an
approach to using LSI in combination with traditional
vector space retrieval called EDLSI. EDLSI uses a
convex combination of the resultant vector from LSI
and the resultant vector from traditional vector space
retrieval. Early results showed that this fusion approach
provided retrieval performance that was better than either
LSI or vector space retrieval alone [5]. Moreover, this

approach is not as sensitive to thek value, and in fact, it
performs well whenk is small (10− 20). In addition to
providing better retrieval performance, keepingk small
provides significant runtime benefits. Fewer SVD dimen-
sions need to be computed, and memory requirements
are reduced because fewer columns of the dense D and
T matrices must be stored.

The computation of the resultant vectorw using
EDLSI is shown in Equation 2, wherex is a weighting
factor (0 ≤ x ≤ 1) and k is kept small. In this
equation,A is the original term-by-document matrix,
Ak is the term-by-document matrix after truncation to
k dimensions, andq is the query vector.

w = (x)(qT Ak) + (1 − x)(qT A) (2)

2.3 Distributed EDLSI

Although the runtime requirements, specifically the
memory, for EDLSI are reduced over LSI, they are still
significant, especially for a corpus the size of IIT CDIP.
After indexing, we produced a term-by-document matrix
that contained 486,654 unique terms and 6,827,940 doc-
uments. Our indexing system used log-entropy weighting
and OCR error detection. Details can be found in [9], [6].

In order to process this large collection, we decided
to sub-divide it into 81 pieces, each of which was about
300 MB in size. Each piece contained approximately
85,000 documents and approximately 100,000 unique
terms (although the term-by-document matrix for each
piece was approximately 85K by 487K). Each piece was
treated as a separate collection (similar to [14]), and the
2008 queries were run against each piece using EDLSI.
The result vectors were then combined so that the top
100,000 scoring documents overall could be submitted
to TREC. The architecture model appears in Figure 2.

In Section 6 we discuss our 2008 TREC submissions
using distributed EDLSI.

2

Fig. 2. Distributed EDLSI

I n d e x i n g

E D L S IE D L S I E D L S I

I I T C D I P
O C R T e x t

T e r m b y D o c u m e n t M a t r i x

P a r t
1

P a r t
2

P a r t
N

R e s u l t
1

R e s u l t
2

R e s u l t
N

R e s u l t M a t r i x

. . .

. . .

Q u e r i e s

3 POWER NORM

A variety of well-known and effective term weighting
schemes can be used when forming the document and
query vectors [17]. Term weighting can be split into three
types: Alocal weight based on the frequency within the
document, aglobal weight based on a term’s frequency
throughout the dataset, and anormalizing weight that
negates the discrepancies of varying document lengths.
The entries in the document vector are computed by
multiplying the global weight for each term by the local
weight for the document-term pair. Normalization may
then be applied to the document and query vectors.

Our power normalization studies employed log-
entropy weighting. The purpose of the log-entropy
weighting scheme is to reduce the relative importance of
high-frequency terms while giving words that distinguish
the documents in a collection a higher weight. Once the
term weight is computed for each document, we then
normalize the document vectors using Equation 3. In
this equationdtw is the document term weight,qtw is
the query term weight,dc is the number of terms in the

document,qc is the number of terms in the query,p
is the normalization parameter, and the sum is over all
terms in the query.

wd =
∑

t∈Q

(

dtw

dcp

qtw

qcp

)

(3)

Power normalization is designed to reduce, but not
completely eliminate, the advantage that longer docu-
ments have within a collection. Without normalization,
long documents would dominate the top ranks because
they contain so many terms. In contrast, cosine nor-
malization ensures in all documents have exactly the
same weight for retrieval purposes. Experiments from
the TREC Legal competition in 2007 showed that power
normalization usingp = 1/3 and p = 1/4 results in
retrieval performance improvements over cosine normal-
ization for the 2006 and 2007 query sets [9].

3

4 BM25
The BM25 algorithm was introduced at TREC 3 [13].
It combines an inverse collection frequency weight with
collection specific scaling for documents and queries.
The weight function for a given document (d) and query
(Q) appears in Equation 4. In this equation,idft refers
to the inverse document frequency weight for a given
term (Equation 5),K is given by Equation 6,tf is the
number of times termt appears in documentd, qtf is the
number of times termt appears in the queryQ, N is the
number of documents in the collection,n is the number
of documents containingt, dl is the document length (we
measured this in words),adl is the average document
length for the corpus (also measured in words), andb,
k1, andk3 are tuning parameters.

wd =
∑

t∈Q

idft

(k1 + 1)tf

(K + tf)

(k3 + 1)qtf

(k3 + qtf)
(4)

idft =
N − n + .5

n + .5
(5)

K = k1

(

(1 − b) + b
dl

adl

)

(6)

The full BM25 weighting scheme is slightly more
complicated than this and requires two additional tuning
parameters, but BM25 reduces to the above formula
when relevance feedback is not used and when those two
parameters take their standard values. Interested readers
will find details in [13].

We recently compared BM25 to power normalization
and determined that BM25 outperforms power normal-
ization at top ranks, but power normalization outper-
forms BM25 in terms of recall after rank 300 [6]. Our
submissions using BM25 and power normalization for
TREC Legal 2008 are described in Sections 7 and 8.

5 DEFINING K AND Kh

We ran a variety of experiments to determine how to
identify the optimalK and Kh for each query. Our
approach centered on finding a scoring threshold to use
for determining optimalK andKh values. After several
false starts using the judged documents from 2006 and
2007, we determined that the collection size for judged
only was insufficient for training. Thus, we used the
entire collection, in conjunction with the 2006 and 2007
queries and judgment data, for training purposes.

Initially we ran the 2006 and 2007 queries against
the IIT CDIP corpus and developed a pseudo submis-
sion file containing the top 100,000 scoring documents
and their scores for each query. We then used these
files as input and measured F1 at a variety of cutoff
threshold levels. If a document score was greater than

the thresholdThresK the document was considered
‘relevant’; otherwise it was considered ‘not relevant’. We
then measured precision, recall, and F1 for each query
and computed the average across all queries. We used
the TREC2006 and TREC2007 relevance judgment files
for computing precision, recall, and F1. All unjudged
documents were considered not relevant. Again, using
only judged documents did not provide sufficient training
data, in our opinion. This approach provided data that
were more consistent across runs.

Two methods were used for determining the optimal
ThresK . The first method determined the optimal F1
for each query individually by incrementingK from 1
to 100,000 and measuring F1. The document score at the
optimal K was determined to beThresK for a given
query. The averageThresK for each query was used to
identify the finalThresK for a query set.

The second approach involved iterating through
thresholds to identify which threshold gave us the opti-
mal F1 for the entire query set. For power normalization,
thresholds from 3 to .01 were tried (in increments of
.02); for BM25, thresholds of 400 to 25 were tried
(in increments of 5). The maximum F1 determined the
optimalThresK value. We measured F1 to 3 significant
digits. When ties for the best F1 were found, maximum
recall was used as a tie breaker to determine the optimal
ThresK .

Both techniques for determiningThresK were used
on the queries for 2006 and 2007 separately and then for
2006 and 2007 combined, for both power normalization
and BM25. The optimal threshold values appear in
Table 1. Because two different approaches were used,
they always produced different optimal values (although
sometimes only slightly different). The lower of these
was used as theK threshold, and the higher was used
as theKh threshold.

6 AD HOC EXPERIMENTS WITH DIS-
TRIBUTED EDLSI
In this section we discuss our distributed EDLSI exper-
iments for the TREC 2008 competition.

6.1 Experimental Design

Our main focus during these experiments was the devel-
opment and implementation of the system. Initially we
hoped to treat the entire collection as a single LSI space.
To accomplish this, we planned to implement EDLSI
with the folding-up algorithm [11]. Folding-up combines
folding-in [3], [2] with SVD updating [12], [18], [2]
to maintain the integrity of the LSI space (with simple
folding-in the columns of T and D generally become
less orthogonal with every added term and document,
respectively). We initially sub-divided the collection into

4

TABLE 1
Determining Optimal K and Kh

Weighting Query Method 1 Method 2
Scheme Set ThresK F1 recall ThresK F1 recall
BM25 TREC 2006 162.4 .104 .177 190 .044 .123
BM25 TREC 2007 307.9 .130 .164 280 .054 .234
BM25 Combined 2006/2007 238.7 .117 .170 215 .040 .236

Power normalization TREC 2006 .655 .050 .187 .800 .026 .075
Power normalization TREC 2007 1.997 .135 .171 1.720 .061 .259
Power normalization Combined 2006/2007 1.358 .095 .179 1.700 .032 .139

81 pieces and used traditional SVD on the first piece.
We then attempted to integrate the remaining 80 pieces
via the folding-up process. Unfortunately, the folding-up
process is memory intensive, and we estimated that the
process would run approximately 35 days; we did not
have sufficient time for it to complete.

Our next approach combined distributed EDLSI with
folding-up. Our design included distributing EDLSI
across 8 processors, each processing about 10 chunks
of data. The first chunk would perform the SVD, the
remaining 9 would be folded-up. We estimated that this
process would take about 10 days, and once again we
did not have sufficient time.

Finally we decided to run a fully distributed EDLSI
system with no folding-up. In this system, we performed
the SVD on each of the 81 pieces separately, used LSI
to run the queries against the SVD space, and combined
the LSI results with the traditional vector space retrieval
results (EDLSI). Interestingly, we were able to run this
algorithm on an IBM x3755 8-way with 4 AMD Opteron
8222 SE 3.0GHz dual-core processors and 128GB RAM
running 64-bit RedHat Linux in approximately 4 hours.

We used only the request text portion of each query
for all runs.

6.2 Choosing the k Parameter

For any LSI system, the question of whichk to use
must be addressed. To consider this question, we tested
our distributed EDLSI with folding-up system on a
subset of the IIT CDIP corpus using the TREC 2007
queries. In this training run, we extracted all documents
that were judged for any of the 2007 queries from the
full IIT CDIP collection. This collection contained ap-
proximately 22,000 documents and 85,000 terms. After
preliminary testing to ensure that the results for TREC
Legal 2007 were similar to other collections, we tested
values fork from 15 to 49 (in increments of 2) and
values forx from .16 to .22 (in increments of.02). The
optimal values werek = 41 andx = .2. These values are
consistent with the values identified in the early EDLSI
experiments described in [5].

The distributed EDLSI system (without folding-up)
with k = 41 andx = .2 was run against the 2008 queries
and was submitted for judging as UCEDLSIa.

One of the most interesting things about EDLSI is that
it works with very few dimenions of the SVD space; thus
we decided to submit a second run with an even lowerk
value. We expected a lowerk value to provide improved
results because keepingk constant while increasing the
number of divisions (over the space we used for the
training run) resulted in a greater number of values being
used in theTk, Sk, and Dk matrices. For instance, at
k = 41, there are a total of4.4 × 108 numbers being
stored inTk, Sk, andDk for 8 partitions, but there are
18.8 × 108 numbers being stored inTk, Sk andDk for
80 partitions.

However, with 80 partitions andk = 10, there are
4.6 × 108 numbers inTk, Sk and Dk. We speculate
that this may indicate that roughly the same amount
of noise has been eliminated from the system as with
8 partitions andk = 41. Therefore we decided to use
k = 10 and x = .2 for our second submission run for
2008 (UCEDLSIb). All experiments to date with EDLSI
seem to indicate that .2 is a suitable weighting factor, and
[5] shows that performance does not vary much withx,
even on fairly large collections.

6.3 Baseline Run

Because comparison to a complete LSI run was not
feasible for a collection this size, we chose instead to
compare our distributed EDLSI system to the traditional
vector space system that forms a part of EDLSI. Our
hypothesis is that EDLSI will elicit enough term rela-
tionship information from LSI to boost the performance
of the vector space model. Our vector space baseline was
submitted as UrsinusVa.

6.4 Defining K and Kh for EDLSI

For UCEDLSIa, theK andKh thresholds were set using
the TREC 2007 training run via the process described
in Section 5. This was not ideal, as explained above,

5

Fig. 3. Distributed EDLSI Result Summary

because only the judged documents were included in the
EDLSI 2007 training run, not the full collection. The run
was optimized using threshold values from .01 to 1.00
in steps of .01. This yielded the valuesThresK = .207
andThresKh

= .227. These same values were used for
the vector baseline run UrsinusVa.

Initially we planned to use these values for UCEDL-
SIb run also, but a glance at the output indicated that
the thresholds were too low to yield meaningful results.
Almost all queries for UCEDLSIb hadK andKh values
close to 100,000. As a result, we raised these thresholds,
to ThresK = .300 andThresKh

= .350 for UCEDLSIb
because they seemed to produce more reasonableK and
Kh values. We should have trusted the original data
however (the top scoring runs at TREC Legal all had
average K values at or near 100,000). A follow-up run
which setK = 100, 000 for all queries, resulted in an
EstimateF1 at K that was 11 times larger than the
submitted run (.1168 vs .0094); this would have made
UCEDLSIb our top scoring run.

6.5 Results

Figure 3 shows a comparison of the two EDLSI submis-
sions and the vector baseline using a variety of metrics.
EDLSI clearly outperforms vector space retrieval across
the board. Furthermore, the performance of EDLSIa,
the optimized EDLSI run, is not dramatically better
than the performance of EDLSIb, the baseline EDLSI
run (k = 10), although it is slightly better on most

metrics. The exception is estimated precision at F1,
where EDLSIb outperforms EDLSIa. This is a direct
result of the averageK value submitted for the two runs.
AverageK for EDLSIa was 15,225; for EDLSIb it was
only 1535. Interestingly, the averageK for the vector
baseline was even lower (802), but it still did not come
close to matching the performance of either EDLSI run.

7 AD HOC EXPERIMENTS USING BM25
AND POWER NORMALIZATION

In this section we describe our submitted runs for BM25
and power normalization.

7.1 Experimental Design

Our experiments in 2007 focused on comparing power
normalization to cosine normalization. We discovered
that power normalization significantly outperformed co-
sine normalization, and we also identified the optimal
power parameter for the 2006 and 2007 queries [9].
Subsequently, we ran some experiments that compared
power normalization to BM25 [6] and learned that BM25
has better retrieval metrics (recall and precision) at top
ranks, but power normalization has better recall as rank
increases. Furthermore, power normalization overtakes
BM25 in terms of recall at about rank 300. Thus, for
2008 we wanted to compare BM25 to power normaliza-
tion. UrsinusBM25a and UrsinusPwrA are our baseline
runs for BM25 and power normalization.

6

As noted in Section 4, BM25 requires a large number
of tuning parameters. For our UrsinusBM25a baseline
run we setb = .6, k1 = 2.25 and k3 = 3. These are
the average of the optimal values for the TREC Legal
2006 and TREC Legal 2007 query sets. We used number
of terms to represent document size and the average
was 435; the total number of indexed documents was
6,827,940.

In section 3 we noted that power normalization also
requires a parameter, the normalization factor,p. The
TREC 2006 normalization factor was used for our Ursi-
nusPwrA submission. The reason for this is described in
Section 7.2.

In addition to comparing BM25 and power normal-
ization, we wanted to see if automatic query expansion
could be used to improve retrieval performance. Thus we
ran training experiments using the TREC Legal 2007
queries. In these experiments we extracted the most
highly weighted 5 and 10 terms from the top-ranked
document, as well as the top three documents, and added
these terms to the original query before rerunning the
search. For both BM25 and power normalization, we
required the document to have some minimal weight be-
fore chosing terms to add. Multiple document thresholds
were tested, and between 0 and 30 terms were added to
each query.

Results from the automatic relevance feedback tests
were submitted as runs UrsinusBM25b (5 terms from
the top document, with a minimum score of 200),
UrsinusPwrB (5 terms from the top document with a
minimum score of 1.0), and UrsinusPwrC (5 terms from
the top 3 documents with a minimum score of 1.4).

We used only the request text portion of each query
for all runs.

7.2 Defining K and Kh for Power Normalization
and BM25

OptimalK andKh values were identified as described in
Section 5. For BM25, this resulted in aThresK = 215
and ThresKh = 239. These values were identified by
combining the TREC Legal 2006 and 2007 values into a
single run of the optimization loop. This threshold was
used for both BM25 runs.

Training using both the 2006 and 2007 query sets
for power normalization to find the optimal theThresk

values for the 2008 queries led toK values that were
very small (we never letK = 0, but there were many
queries withK = 1). Therefore, we decided to use the
ThresK and ThresKh values that were identified by
training on the 2006 queries only, instead of using the
combined values, because this produced more reasonable
results forK. This leads us to conclude that the 2008
queries are more like the 2006 queries than the 2007
queries (or some combination of the two), so we also

used the optimalp for the 2006 query set (p = .36)
rather than an average of the optimalp for 2006 and
2007 (p = .32). The correspondingThresK = .655
and ThresKh = .800 values were used for the power
normalization runs.

7.3 Results

Figure 4 shows a comparison of the BM25 run with
relevance feedback and the BM25 baseline run. The
relevance feedback run outperformed the baseline run
on every statistic except estimated precision atK. This
was not surprising as the averageK for the relevance
feedback run was almost three times the averageK
for the baseline run (10,168 vs. 3157) and precision
decreases as additional documents are retrieved.

Figure 5 shows the results for the three power nor-
malization runs. The results for power norm are more
mixed. Although all three runs resulted in similar re-
trieval performance across the statistics shown, there is
no run that consistently outperforms the other two. The
baseline run outperforms the relevance feedback runs for
estimated recall at B, estimated precision at F1, recall
at B, and precision at B. PowerC adds in the top 5
terms from the top 3 documents, if the term weight
is greater than 1.4 and performs nearly identically to
the baseline run (PowerA) across the board. PowerC is
usually less than PowerA, only slightly outperforming
PowerA when the estimated precision at B is used.
This suggests that PowerC is adding terms that are
slightly unhelpful. PowerB does significantly better than
PowerA on the competition metric (estimated F1 at K).
It outperforms both PowerA and PowerC for estimated
precision at B, estimated recall at K, estimated F1 at K,
mean average precision (MAP), and MAP using judged
documents only. The average K for PowerB is 3292, for
PowerA it is 905, and for PowerC it is 850. Interestingly,
although PowerB retrieves approximately three times as
many documents at K on average, the precision at K
is only slightly less than precision at K for PowerA and
PowerC. Recall is again naturally much better due to the
larger K value.

Finally, Figure 6 compares the performance of the
optimal BM25 to the two best Power normalization
schemes. BM25 is the clear winner. It soundly outper-
forms power normalization on the track metric of esti-
mated F1 at K. There is again a three-to-one advantage in
terms of documents retrieved (BM25b retrieves 10,168
on average, PowerB retrieves 3292), but BM25b man-
ages to retrieve this large number of documents without
sacrificing precision. Indeed, BM25b outperforms the
power normalization schemes on all three F1 metrics. In
fact, the only algorithm that happens to beat BM25b on
any of the at-K based metrics is EDLSIa, which outper-
forms all other metrics in estimated recall at K. EDLSIa

7

Fig. 4. BM25 Baseline vs. Automated Relevance Feedback

Fig. 5. Power Baseline vs. Automated Relevance Feedback

8

Fig. 6. Comparison of BM25 to Power Normalization

appears to accomplish this feat by simply retrieving more
documents (average K is 15,225) and pays dearly in
precision for this recall advantage. PowerA and PowerC
manage to outperform BM25b on the statistic that was
used for the competition is 2007; both of these schemes
have a larger estimated recall at B.

8 RELEVANCE FEEDBACK RUNS USING
BM25 AND POWER NORMALIZATION

In this section we describe our submissions and results
for the relevance feedback task.

8.1 Experimental Design

Our relevance feedback submissions leveraged our work
on automatic relevance feedback. We decided to look
at the top weighted terms from all documents that
were judged relevant. Terms were added to the query
only if their global term weight met a certain weight
threshold. Some minimal training was done to determine
the optimal number of terms and optimal term weight
before we ran out of time. We used only the request text
portion of each query for all runs.

Our relevance feedback runs are summarized below:

• UCRFBM25BL: BM25 baseline using the same
parameters as UrsinusBM25a

• UCRFPwrBL: Power Norm baseline using the same
parameters as UrsinusPwrA

• UCBM25T5Th5: BM25 with 5 terms over weight
5 added to each query

• UCBM25T10Th5: BM25 with 10 terms over weight
5 added to each query

• UCPwrT5Th5: Power Norm with 5 terms over
weight 5 added to each query

• UCPwrT10Th5: Power Norm with 10 terms over
weight 5 for each query

8.2 Defining K and Kh for Relevance Feedback

The ThresK and ThresKh
values from the ad hoc

experiments were also used for the relevance feedback
experiments.

8.3 Results

The first interesting feature that we noted is the use
of the ThresK and ThresKh

values from the ad hoc
experiments resulted in a far larger value ofK for the
relevance feedback runs. The basic power normalization
run in the ad hoc submissions resulted in an averageK
value of 905; for the relevance feedback runs, the average
K value was 1547. More strikingly, after the top 5 terms
were added, the averageK jumped to 11,880. When ten
terms were added, the value increased to 13,233. For the
BM25 submission the averageK rose even faster. The
baseline relevance feedback run had aK value of 564,
which was significantly lower than the ad hoc average
K (3157), but when five terms were added, this jumped

9

Fig. 7. Power vs. BM25 Relevance Feedback Run Comparison

Fig. 8. Power Relevance Feedback Run Comparison - Adding additional terms

to 6517. When 10 terms were added, it took another leap
to 21,406.

Figure 7 shows a comparison of the results for the
top scoring BM25 and Power normalization relevance
feedback runs. BM25 is clearly outperforming power
normalization. It will be interesting to optimize the
ThresK and ThresKh

values in post-hoc testing, to
see if BM25 is getting its advantage by merely re-
trieving more documents. The strong showing on last
year’s metric (Estimate Recall at B) leads us to believe
that BM25 will likely to continue to outperform power

normalization after additional optimizations are run.
Figures 8 and 9 show the comparison for each weight-

ing/normalization scheme as additional terms are added.
We now detect a distinct difference between the power
normalization runs and the relevance feedback runs.
The power norm consistently does better as more terms
are added. Adding five terms outperforms the baseline;
adding ten terms outperforms adding only five terms.
We plan post-hoc testing to take this strategy further to
determine where the performance peaks and begins to
degrade.

10

Fig. 9. BM25 Relevance Feedback Run Comparison - Adding additional terms

With BM25, however, we have a murkier situation.
The baseline run actually outperforms the relevance
feedback runs when the metrics from 2007 are used for
comparison (Estimated Recall and Precision atB). It
also strongly outperforms the other runs when Recall
at B is measured. The run with ten terms added does
best of the competition metrics for 2008 (F1, Recall,
and Precision atK), but this could be due to the larger
averageK values. Perhaps most interesting of all is that
the run with five terms added does best when the mean
average precision metrics are observed.

9 CONCLUSIONS

Our experiments show that the Distributed EDLSI ap-
proach is promising, but it is not yet fully mature.
It soundly outperformed the vector baseline approach,
but it could not improve upon a basic BM25 system.
Generally BM25 was the most consistent performing
algorithm across all of the techniques we tested. BM25b
outperformed power normalization on both the ad hoc
and the relevance feedback tasks, and it outperformed
Distributed EDLSI on the ad hoc task. Post analysis will
be done to optimize the parameter settings for all three
approaches.

REFERENCES

[1] Michael W. Berry. Large-scale sparse singular value computa-
tions. The International Journal of Supercomputer Applications,
6(1):13–49, Spring 1992.

[2] Michael W. Berry, Susan T. Dumais, and Gavin W. O’Brien.
Using linear algebra for intelligent information retrieval. SIAM
Review, 37(4):575–595, 1995.

[3] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer,
George W. Furnas, and Richard A. Harshman. Indexing by
latent semantic analysis.Journal of the American Society of
Information Science, 41(6):391–407, 1990.

[4] Susan T. Dumais. LSI meets TREC: A status report. In
D. Harman, editor,The First Text REtrieval Conference (TREC-
1), National Institute of Standards and Technology Special Pub-
lication 500-207, pages 137–152, 1992.

[5] April Kontostathis. Essential Dimensions of Latent Semantic
Indexing (EDLSI). InProceedings of the 40th Annual Hawaii
International Conference on System Sciences (CD-ROM), Kona,
Hawaii, USA, 2007. Computer Society Press.

[6] April Kontostathis and Scott Kulp. The Effect of Normalization
when Recall Really Matters. InProceedings of the 2008 Interna-
tional Conference on Information and Knowledge Engineering,
Las Vegas, NV, USA, 2008. CSREA Press.

[7] April Kontostathis and William M. Pottenger. A framework
for understanding Latent Semantic Indexing (LSI) performance.
Information Processing and Management, 42(1):56–73, 2006.

[8] April Kontostathis, William M. Pottenger, and Brian D. Davison.
Identification of critical values in latent semantic indexing. In
T.Y. Lin, S. Ohsuga, C. Liau, X. Hu, and S. Tsumoto, editors,
Foundations of Data Mining and Knowledge Discovery, pages
333–346. Spring-Verlag, 2005.

[9] Scott Kulp and April Kontostathis. On Retrieving Legal Files:
Shortening Documents and Weeding Out Garbage. InProceed-
ings of the Sixteenth Text REtrieval Conference (TREC2007),
Bethesda, MD, 2008. NIST Special Publication 500-274.

[10] Todd A. Letsche and Michael W. Berry. Large-scale information
retrieval with latent semantic indexing.Information Sciences,
100(1-4):105–137, 1997.

[11] Jane E. Mason and Raymond J. Spiteri. A New Adaptive Folding-
up Algorithm for Information Retrieval. InProceedings of the
2008 Text Mining Workshop, Atlanta, GA, 2008. SIAM.

[12] Gavin W. O”Brien. Information management tools for updating

11

an svd-encoded indexing scheme. Technical report, Knoxville,
TN, USA, 1994.

[13] Stephen E. Robertson, Steve Walker, Micheline Hancock-
Beaulieu, Aarron Gull, and Marianna Lau. Okapi at TREC. In
Text REtrieval Conference, pages 21–30, 1992.

[14] Chunqiang Tang, Sandhya Dwarkadas, and Zhichen Xu. On
scaling latent semantic indexing for large peer-to-peer systems.
In SIGIR ’04: Proceedings of the 27th annual international ACM
SIGIR conference on Research and development in information
retrieval, pages 112–121, New York, NY, USA, 2004. ACM.

[15] Jane E. Tougas and Raymond J. Spiteri. Updating the partial sin-
gular value decomposition in latent semantic indexing.Comput.
Statist. Data Anal., 52(1):174–183, 2007.

[16] Jane E. Tougas and Raymond J. Spiteri. Two uses for updating the
partial singular value decomposition in latent semantic indexing.
Appl. Numer. Math., 58(4):499–510, 2008.

[17] C.J. van Rijsbergen. Information Retrieval. Department of
Computer Science, University of Glasgow, 1979.

[18] Hongyuan Zha and Horst D. Simon. On updating problems in
latent semantic indexing.SIAM J. Sci. Comput., 21(2):782–791,
1999.

12

	Introduction
	Essential Dimensions of LSI
	Latent Semantic Indexing
	EDLSI
	Distributed EDLSI

	Power Norm
	BM25
	Defining K and Kh
	Ad Hoc Experiments with Distributed EDLSI
	Experimental Design
	Choosing the LSIk Parameter
	Baseline Run
	Defining K and Kh for EDLSI
	Results

	Ad Hoc Experiments using BM25 and Power Normalization
	Experimental Design
	Defining K and Kh for Power Norm and BM25
	Results

	Relevance Feedback runs using BM25 and Power Normalization
	Experimental Design
	Defining K and Kh for Relevance Feedback
	Results

	Conclusions
	References

