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Abstract —This paper describes our participation in the TREC
Legal competition in 2008. Our first set of experiments involved
the use of Latent Semantic Indexing (LSI) with a small number
of dimensions, a technique we refer to as Essential Dimensions
of Latent Semantic Indexing (EDLSI). Because the experimental
dataset is large, we designed a distributed version of EDLSI to
use for our submitted runs. We submitted two runs using dis-
tributed EDLSI, one with & = 10 and another with k¥ = 41, where
k is the dimensionality reduction parameter for LSI. We also
submitted a traditional vector space baseline for comparison with
the EDLSI results. This article describes our experimental design
and the results of these experiments. We find that EDLSI clearly
outperforms traditional vector space retrieval using a variety of
TREC reporting metrics.

We also describe experiments that were designed as a fol-
lowup to our TREC Legal 2007 submission. These experiments
test weighting and normalization schemes as well as techniques
for relevance feedback. Our primary intent was to compare the
BM25 weighting scheme to our power normalization technique.
BM25 outperformed all of our other submissions on the competi-
tion metric (F1 at K) for both the ad hoc and relevance feedback
tasks, but Power normalization outperformed BM25 in our ad hoc
experiments when the 2007 metric (estimated recall at B) was
used for comparison.

We have extensive experience with Latent Semantic
Indexing (LSI) [5], [7], [€], [15], [16], [11]. Thus we
were also eager to see how LSI would work on the IIT
Complex Document Information Processing (IIT CDIP)
test collection, which contains approximately 7 million
documents (57 GB of uncompressed text). Specifically,
we wanted to see if the Essential Dimensions of Latent
Semantic Indexing (EDLSI) [5] approach would scale to
this large collection and what the optimalalue would
be. We have used SVD updating, folding-in, and folding-
up in previous work[[15],[[16],[[11], and it appeared
that these techniques would be useful for handling a
collection of this size.

This year, teams participating in the TREC Legal task
were required to indicate thE and K, value for each
query. K is the threshold at which the system believes
the competing demands of recall and precision are best
balanced (using the F1@K measure shown in Equation
@), and K}, is the corresponding threshold for highly
relevant documents. Assessors assigned a value of highly
relevant when judging documents for the first time this
year. Much of our preparatory work for the competition
centered on determining appropriate ways to/seand

1 INTRODUCTION K, for each query.

In the 2007 TREC Legal competition, our submissions

were designed to test the effectiveness of a variety of F1ax = (2« PQK * RQK)/(PQK + RAQK) (1)
simple normalization schemes on a large dataset. We

had planned a comparison with some of the state-of-the-This paper is organized as follows: Sectih§l2, 3, and
art systems for weighting and normalization, but the& describe the methodologies used. Sedfibn 5 discusses
activities were not completed in time for the TREGur approach for finding the optim&l and K} values
2007 submissions. Thus, in 2008 one of our primarpr each query. Sectidd 6 describes our experiments and
goals was to compare power normalization [9] to theesults when EDLSI was used in the ad hoc task. Section
BM25 weighting schemeé [13]. We submitted five ad hd@ details our power normalization and BM25 ad hoc
runs and six relevance feedback runs that compare thes@eriments and results. Sectibh 8 discusses our rele-
algorithms. vance feedback submissions with power normalization



Fig. 1. Truncation of SVD for LSI
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and BM25. Sectiofi]9 presents our conclusions. approach is not as sensitive to thealue, and in fact, it
performs well wherk is small (L0 — 20). In addition to
2 ESSENTIAL DIMENSIONS OF LSI providing better retrieval performance, keepikigmall

In this section we first describe LSL. We then discusgrowdes significant runtime benefits. Fewer SVD dimen-

EDLSI and how it improves upon LSI. We also detaiP' o> need to be computed, and memory requirements

the distributed EDLSI approach we used for our TRE@re reduced because fewer columns of the dense D and

. matrices must be stored.
Legal 2008 submissions. ) ]
The computation of the resultant vectar using

. , EDLSI is shown in Equatioh]2, whete is a weighting
2.1 Latent Semantic Indexing factor 0 < z < 1) and k is kept small. In this
LSl is a well-known approach to information retrievakquation, A is the original term-by-document matrix,
that is believed to reduce the problems associated witf), is the term-by-document matrix after truncation to

polysemy and synonymy [3]. At the heart of LSI is & dimensions, and is the query vector.
matrix factorization, thesingular value decomposition

(SVD), which is used to express thex d term-by- w = (z)(qT Ap) + (1 — z)(¢T A) )

document matrix as a product of three matrices, a term

component (T), a “diagonal” matrix of nonnegative sin-

gular values in non-increasing order (S), and a document

component (D). This is shown pictorially in Figuré 1o 3 Distributed EDLSI

taken from [2]. The original term-by-document matrix

A'is then given byd = T'SD™. In LS|, these matrices Although the runtime requirements, specifically the

are truncated td < min(t,d) dimensions by zeroing memory, for EDLSI are reduced over LS, they are still

elements in the singular value matrix S. In practice, fasignificant, especially for a corpus the size of IIT CDIP.

algorithms exist to compute only the requiredominant - After indexing, we produced a term-by-document matrix

singular values and the associated vectors in T arid D [#}at contained 486,654 unique terms and 6,827,940 doc-
The primary problem with LSI is that the optimaluments. Our indexing system used log-entropy weighting

number of dimensions to use for truncation is depen-and OCR error detection. Details can be foundin [9], [6].

dent upon the collection [4]. [10]. Furthermore, as shown |, order to process this large collection, we decided

in [8], LSI does not always outperform traditional vectof, ¢ ,p_divide it into 81 pieces, each of which was about

space retrieval, especially on large collections. 300 MB in size. Each piece contained approximately

85,000 documents and approximately 100,000 unique
2.2 EDLSI terms (although the term-by-document matrix for each

To address this problem, Kontostathis developed &iece was approximately 85K by 487K). Each piece was
approach to using LSI in combination with traditionafreated as a separate collection (similartd [14]), and the
vector space retrieval called EDLSI. EDLSI uses 8008 queries were run against each piece using EDLSI.
convex combination of the resultant vector from LSIhe result vectors were then combined so that the top
and the resultant vector from traditional vector spack00,000 scoring documents overall could be submitted
retrieval. Early results showed that this fusion approadd TREC. The architecture model appears in Figdre 2.
provided retrieval performance that was better than eitherln Section 6 we discuss our 2008 TREC submissions
LSI or vector space retrieval along| [5]. Moreover, thisising distributed EDLSI.



Fig. 2. Distributed EDLSI
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3 POWER NORM document,qc is the number of terms in the query,

A variety of well-known and effective term weightingiS the normalization parameter, and the sum is over all
schemes can be used when forming the document d8fms in the query.

query vectord [17]. Term weighting can be split into three

types: Alocal weight based on the frequency within the

document, gylobal weight based on a term’s frequency dtw gtw
throughout the dataset, andnermalizing weight that wg =Y (W E) 3)
negates the discrepancies of varying document lengths. teQ

The entries in the document vector are computed by
multiplying the global weight for each term by the local
weight for the document-term pair. Normalization may Power normalization is designed to reduce, but not
then be applied to the document and query vectors. completely eliminate, the advantage that longer docu-
Our power normalization studies employed logments have within a collection. Without normalization,
entropy weighting. The purpose of the log-entropiong documents would dominate the top ranks because
weighting scheme is to reduce the relative importance tifey contain so many terms. In contrast, cosine nor-
high-frequency terms while giving words that distinguisimalization ensures in all documents have exactly the
the documents in a collection a higher weight. Once tleame weight for retrieval purposes. Experiments from
term weight is computed for each document, we theghe TREC Legal competition in 2007 showed that power
normalize the document vectors using Equafidn 3. mmormalization usingp = 1/3 andp = 1/4 results in
this equationdtw is the document term weighgfw is retrieval performance improvements over cosine normal-
the query term weightjc is the number of terms in the ization for the 2006 and 2007 query sets [9].



4 BM25 the thresholdT hresyx the document was considered

The BM25 algorithm was introduced at TREC [3 [13]frelevant’; otherwise it was considered ‘not relevant’. We

It combines an inverse collection frequency weight Withen measured precision, recall, and F1 for each query

collection specific scaling for documents and querie@.nd computed the average across all queries. We used

The weight function for a given document)(@nd query the TRECZQOG and_T_RECZOO? relevance judgment files
(Q) appears in Equatio 4. In this equatianf; refers for computing precision, recall, and F1. All un_judge_d
to the inverse document frequency weight for a givefiocuments were considered not relevant. Again, using
term (Equatioi5)/ is given by Equatioflétf is the onlngdged doc_ur_nents d_|d not provide sufflment training
number of times term appears in documentt qtf is the data, in our opinion. This approach provided data that

number of times term appears in the quer, N is the were more consistent across runs. o .
number of documents in the collectiom,js the number __ TWO methods were used for determining the optimal

of documents containing d/ is the document length (we £ 7€k - The first method determined the optimal F1
measured this in wordsydl is the average documentfor each query |nd|V|du.aIIy by incrementing from 1
length for the corpus (also measured in words), and to 100,000 and measuring F1. The document score at the

k1, andk3 are tuning parameters optimal K was determined to b&hresy for a given
' ' qguery. The averag@€hresy for each query was used to

S Zidf (k14+1)tf (k3 +1)qtf @ identify the finalT'hresk for a query set.
d= ¢ (K +tf) (k3 + qtf) The second approach involved iterating through
teQ thresholds to identify which threshold gave us the opti-
- N—-n+.5 ®) mal F1 for the entire query set. For power normalization,
idf, = n+.5 thresholds from 3 to .01 were tried (in increments of

.02); for BM25, thresholds of 400 to 25 were tried

K=kl ((1 b+ bﬂ) (6) (in increments of 5). The maximum F1 determined the

adl optimal T hresx value. We measured F1 to 3 significant

The full BM25 weighting scheme is slightly moredigits. When ties for the best F1 were found, maximum

complicated than this and requires two additional tuninfgc@ll was used as a tie breaker to determine the optimal
parameters, but BM25 reduces to the above form dires . . o
when relevance feedback is not used and when those twd30th techniques for determininghres were used
parameters take their standard values. Interested readiéthe queries for 2006 and 2007 separately and then for
will find details in 131. 2006 and 2007 combined, for both power normalization
We recently compared BM25 to power normalizatiog"d BM25. The optimal threshold values appear in
and determined that BM25 outperforms power normal@Plell. Because two different approaches were used,
ization at top ranks, but power normalization outpefl€y &ways produced different optimal values (although
forms BM25 in terms of recall after rank 3001 [6]. OurSometimes only slightly different). The lower of these
submissions using BM25 and power normalization fof/@s used as th& threshold, and the higher was used
TREC Legal 2008 are described in Sectibhs 7 [@nd 8.2 theK), threshold.

5 DEFINING K AND K, ?RIQJDTES(I)ECE)LETPERH\AENTS WITH Dis-

?/c\i/een:i?n t?] (;/aonetﬁln glfl{exgr?(;'nl‘{entfzrtoe:s;ermu'enre hglljvr " this section we discuss our distributed EDLSI exper-
y p h query. iments for the TREC 2008 competition.

approach centered on finding a scoring threshold to use

for determining optimal and K, values. After several ) )

false starts using the judged documents from 2006 afdl Experimental Design

2007, we determined that the collection size for judge@ur main focus during these experiments was the devel-

only was insufficient for training. Thus, we used th@pment and implementation of the system. Initially we

entire collection, in conjunction with the 2006 and 200hoped to treat the entire collection as a single LSI space.

queries and judgment data, for training purposes. To accomplish this, we planned to implement EDLSI
Initially we ran the 2006 and 2007 queries againstith the folding-up algorithm [11]. Folding-up combines

the IIT CDIP corpus and developed a pseudo submifelding-in [3], [2] with SVD updating [12], [[18], [[2]

sion file containing the top 100,000 scoring documents maintain the integrity of the LSI space (with simple

and their scores for each query. We then used theedéding-in the columns of T and D generally become

files as input and measured F1 at a variety of cutofss orthogonal with every added term and document,

threshold levels. If a document score was greater thagspectively). We initially sub-divided the collectiortan

4



TABLE 1
Determining Optimal K and K},

Weighting Query Method 1 Method 2
Scheme Set Thresk | F1 | recall | Threskx | F1 | recall
BM25 TREC 2006 162.4| .104| .177 190 | .044| .123
BM25 TREC 2007 307.9| .130| .164 280 | .054 | .234
BM25 Combined 2006/2007 238.7| .117| .170 215 | .040| .236
Power normalization TREC 2006 .655 | .050 .187 .800| .026| .075
Power normalization TREC 2007 1.997| .135 A71 1.720| .061 .259
Power normalization Combined 2006/2007 1.358| .095 179 1.700| .032 .139

81 pieces and used traditional SVD on the first piece. The distributed EDLSI system (without folding-up)
We then attempted to integrate the remaining 80 piecesth £ = 41 andz = .2 was run against the 2008 queries
via the folding-up process. Unfortunately, the folding-upnd was submitted for judging as UCEDLSIa.
process is memory intensive, and we estimated that theOne of the most interesting things about EDLSI is that
process would run approximately 35 days; we did natworks with very few dimenions of the SVD space; thus
have sufficient time for it to complete. we decided to submit a second run with an even lower
Our next approach combined distributed EDLSI witlvalue. We expected a lowérvalue to provide improved
folding-up. Our design included distributing EDLSIresults because keepikgconstant while increasing the
across 8 processors, each processing about 10 chunimber of divisions (over the space we used for the
of data. The first chunk would perform the SVD, theraining run) resulted in a greater number of values being
remaining 9 would be folded-up. We estimated that thissed in theT}, Si, and D;, matrices. For instance, at
process would take about 10 days, and once again Wwe= 41, there are a total of.4 x 10® numbers being
did not have sufficient time. stored inTy, Sk, and Dy, for 8 partitions, but there are
Finally we decided to run a fully distributed EDLSI18.8 x 10® numbers being stored ifi,, S and D;, for
system with no folding-up. In this system, we performe#0 partitions.
the SVD on each of the 81 pieces separately, used LSIHowever, with 80 partitions an& = 10, there are
to run the queries against the SVD space, and combingd x 108 numbers inTy, S; and D;. We speculate
the LSI results with the traditional vector space retrievahat this may indicate that roughly the same amount
results (EDLSI). Interestingly, we were able to run thisf noise has been eliminated from the system as with
algorithm on an IBM x3755 8-way with 4 AMD Opteron8 partitions andk = 41. Therefore we decided to use
8222 SE 3.0GHz dual-core processors and 128GB RAM= 10 andx = .2 for our second submission run for
running 64-bit RedHat Linux in approximately 4 hours2008 (UCEDLSIb). All experiments to date with EDLSI
We used only the request text portion of each quegeem to indicate that .2 is a suitable weighting factor, and
for all runs. [5] shows that performance does not vary much with
even on fairly large collections.
6.2 Choosing the k Parameter

For any LSI system, the question of whi¢hto use 6.3 Baseline Run

must be addressed. To consider this question, we tesgggd-q,se comparison to a complete LSI run was not
our distributed EDLSI with folding-up system on &easiple for a collection this size, we chose instead to
subset of the IIT CDIP corpus using the TREC 2004, mpare our distributed EDLSI system to the traditional
queries. In this training run, we extracted all documentg,ctor space system that forms a part of EDLSI. Our
that were judged for any of the 2007 queries from thgy hihesis is that EDLSI will elicit enough term rela-

full IIT CDIP collection. This collection contained ap-ionship information from LS| to boost the performance
proximately 22,000 documents and 85,000 terms. Aftef ihe vector space model. Our vector space baseline was
preliminary testing to ensure that the results for TREG,pmitted as UrsinusVa.

Legal 2007 were similar to other collections, we tested

values fork from 15 to 49 (in increments of 2) and o

values forz from .16 to .22 (in increments 0f2). The 6-4 Defining K and Kj, for EDLSI

optimal values weré = 41 andz = .2. These values are For UCEDLSIa, thek and K, thresholds were set using
consistent with the values identified in the early EDLSthe TREC 2007 training run via the process described
experiments described inl[5]. in Section[b. This was not ideal, as explained above,



Fig. 3. Distributed EDLSI Result Summary
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because only the judged documents were included in theetrics. The exception is estimated precision at F1,

EDLSI 2007 training run, not the full collection. The runwhere EDLSIb outperforms EDLSIa. This is a direct

was optimized using threshold values from .01 to 1.0@sult of the averag& value submitted for the two runs.

in steps of .01. This yielded the valu&%iresx = .207 AverageK for EDLSla was 15,225; for EDLSIb it was

andThresg, = .227. These same values were used fasnly 1535. Interestingly, the averagé for the vector

the vector baseline run UrsinusVa. baseline was even lower (802), but it still did not come
Initially we planned to use these values for UCEDLelose to matching the performance of either EDLSI run.

Slb run also, but a glance at the output indicated that

the thresholds were too low to yield meaningful result

Almost all queries for UCEDLSIb ha&™ and K, values SI AD HOC EXPERIMENTS USING BM25

close to 100,000. As a result, we raised these threshol@${D POWER NORMALIZATION

to Thresk = .300 andT'hres, = .350 for UCEDLSIb |n this section we describe our submitted runs for BM25

because they seemed to produce more reasohalled and power normalization.

K;, values. We should have trusted the original data

however (the top scoring runs at TREC Legal all had ) ]

average K values at or near 100,000). A follow-up ruf-l Experimental Design

which setK = 100,000 for all queries, resulted in an Our experiments in 2007 focused on comparing power

Estimate F'1 at K that was 11 times larger than thenormalization to cosine normalization. We discovered

submitted run (.1168 vs .0094); this would have mad&at power normalization significantly outperformed co-

UCEDLSIb our top scoring run. sine normalization, and we also identified the optimal

power parameter for the 2006 and 2007 querigs [9].

Subsequently, we ran some experiments that compared

6.5 Results power normalization to BM25 [6] and learned that BM25

Figure[3 shows a comparison of the two EDLSI submidas better retrieval metrics (recall and precision) at top

sions and the vector baseline using a variety of metriamnks, but power normalization has better recall as rank

EDLSI clearly outperforms vector space retrieval acrosscreases. Furthermore, power normalization overtakes

the board. Furthermore, the performance of EDLSI&M25 in terms of recall at about rank 300. Thus, for

the optimized EDLSI run, is not dramatically bette2008 we wanted to compare BM25 to power normaliza-

than the performance of EDLSIb, the baseline EDLSion. UrsinusBM25a and UrsinusPwrA are our baseline

run (¢ = 10), although it is slightly better on mostruns for BM25 and power normalization.



As noted in Sectiohl4, BM25 requires a large numbersed the optimap for the 2006 query setp(= .36)
of tuning parameters. For our UrsinusBM25a baselimather than an average of the optimalfor 2006 and
run we setb = .6, k1 = 2.25 and k3 = 3. These are 2007 { = .32). The corresponding’hresx = .655
the average of the optimal values for the TREC Legaind T'hresk, = .800 values were used for the power
2006 and TREC Legal 2007 query sets. We used numbwrmalization runs.
of terms to represent document size and the average
was 435; the total number of indexed documents wads3 Results

6,827,940. Figure[2 shows a comparison of the BM25 run with
In section[8 we noted that power normalization alsgsjeyance feedback and the BM25 baseline run. The
requires a parameter, the normalization facfor,The yglevance feedback run outperformed the baseline run
TREC 2006 normalization factor was used for our Ursjy, every statistic except estimated precisiorkatThis
nustrA submission. The reason for this is described s not surprising as the average for the relevance
Section Z.P. _ feedback run was almost three times the average
~ In addition to comparing BM25 and power normalor the baseline run (10,168 vs. 3157) and precision
ization, we wanted to see if automatic query expansiQfycreases as additional documents are retrieved.
could be used to improve retrieval performance. Thus we Figure[B shows the results for the three power nor-
ran training experiments using the TREC Legal 200f3jization runs. The results for power norm are more
queries. In these experiments we extracted the mM@gixed. Although all three runs resulted in similar re-
highly weighted 5 and 10 terms from the top-rankeglieval performance across the statistics shown, there is
document, as well as the top three documents, and ad@gflyyn that consistently outperforms the other two. The
these terms to the original query before rerunning thgyseline run outperforms the relevance feedback runs for
search. For both BM25 and power normalization, Wgstimated recall at B, estimated precision at F1, recall
required the document to have some minimal weight bgr g and precision at B. PowerC adds in the top 5
fore chosing terms to add. Multiple document thresholdgyms from the top 3 documents, if the term weight
were tested, and between 0 and 30 terms were addeqdiQyreater than 1.4 and performs nearly identically to
each query. . the baseline run (PowerA) across the board. PowerC is
Results f_rom the automatic relevance feedback tegfSually less than PowerA, only slightly outperforming
were submitted as runs UrsinusBM25b (5 terms frofpgyera when the estimated precision at B is used.
the top document, with a minimum score of 200)rhis suggests that PowerC is adding terms that are
UrsinusPwrB (5 terms from the top document with &jightly unhelpful. PowerB does significantly better than
minimum score of 1.0), and UrsinusPwrC (5 terms fromayera on the competition metric (estimated F1 at K).
the top 3 documents with a minimum score of 1.4). |t gutperforms both PowerA and PowerC for estimated
We used only the request text portion of each quegyecision at B, estimated recall at K, estimated F1 at K,
for all runs. mean average precision (MAP), and MAP using judged
. o documents only. The average K for PowerB is 3292, for
7.2 Defining K and K for Power Normalization  pgwerA it is 905, and for PowerC it is 850. Interestingly,
and BM25 although PowerB retrieves approximately three times as
Optimal K and K}, values were identified as described ilmany documents at K on average, the precision at K
Section . For BM25, this resulted in®Bhresx = 215 is only slightly less than precision at K for PowerA and
and Thresg, = 239. These values were identified byPowerC. Recall is again naturally much better due to the
combining the TREC Legal 2006 and 2007 values intolarger K value.
single run of the optimization loop. This threshold was Finally, Figure[6 compares the performance of the
used for both BM25 runs. optimal BM25 to the two best Power normalization
Training using both the 2006 and 2007 query seschemes. BM25 is the clear winner. It soundly outper-
for power normalization to find the optimal tliéhres,  forms power normalization on the track metric of esti-
values for the 2008 queries led # values that were mated F1 at K. There is again a three-to-one advantage in
very small (we never lefX = 0, but there were many terms of documents retrieved (BM25b retrieves 10,168
gueries withK = 1). Therefore, we decided to use theon average, PowerB retrieves 3292), but BM25b man-
Thresix and Thresky, values that were identified by ages to retrieve this large number of documents without
training on the 2006 queries only, instead of using theacrificing precision. Indeed, BM25b outperforms the
combined values, because this produced more reasongm@er normalization schemes on all three F1 metrics. In
results for K. This leads us to conclude that the 2008&ct, the only algorithm that happens to beat BM25b on
queries are more like the 2006 queries than the 20@Ry of the at-K based metrics is EDLSIa, which outper-
gueries (or some combination of the two), so we aldorms all other metrics in estimated recall at K. EDLSIla



Fig. 4.

BM25 Baseline vs. Automated Relevance Feedback
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Fig. 6. Comparison of BM25 to Power Normalization

BM25 Comparison with Power Norm
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appears to accomplish this feat by simply retrieving more « UCBM25T5Th5; BM25 with 5 terms over weight

documents (average K is 15,225) and pays dearly in
precision for this recall advantage. PowerA and PowerC «
manage to outperform BM25b on the statistic that was
used for the competition is 2007; both of these schemes.
have a larger estimated recall at B.

5 added to each query

UCBM25T10Th5: BM25 with 10 terms over weight
5 added to each query

UCPwrT5Th5: Power Norm with 5 terms over
weight 5 added to each query

e UCPwWIT10Th5: Power Norm with 10 terms over

8 RELEVANCE FEEDBACK RUNS USING weight 5 for each query

BM25 AND POWER NORMALIZATION

In this section we describe our submissions and res
for the relevance feedback task.

8.2 Defining K and Kj for Relevance Feedback

LuItﬁe Threskg and Thresk, values from the ad hoc
experiments were also used for the relevance feedback
experiments.

8.1 Experimental Design

Our relevance feedback submissions leveraged our w@l8 Results

on automatic relevance feedback. We decided to logie first interesting feature that we noted is the use
at the top weighted terms from all documents thaj the Thresy and Thresk, values from the ad hoc
were judged relevant. Terms were added to the quegyperiments resulted in a far larger value I6ffor the
only if their global term weight met a certain weightgleyance feedback runs. The basic power normalization
threshold. Some minimal training was done to determingn in the ad hoc submissions resulted in an aversge
the optimal number of terms and optimal term weighja|ue of 905; for the relevance feedback runs, the average
before we ran out of time. We used only the request text yajue was 1547. More strikingly, after the top 5 terms
portion of each query for all runs. were added, the averadé jumped to 11,880. When ten
Our relevance feedback runs are summarized belowérms were added, the value increased to 13,233. For the
o« UCRFBM25BL: BM25 baseline using the sameBM25 submission the averag€ rose even faster. The
parameters as UrsinusBM25a baseline relevance feedback run hadavalue of 564,
« UCRFPwrBL: Power Norm baseline using the samehich was significantly lower than the ad hoc average
parameters as UrsinusPwrA K (3157), but when five terms were added, this jumped



Fig. 7. Power vs. BM25 Relevance Feedback Run Comparison
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to 6517. When 10 terms were added, it took another leaprmalization after additional optimizations are run.
to 21,406. Figured 8 and]9 show the comparison for each weight-
Figure[T shows a comparison of the results for thieg/normalization scheme as additional terms are added.
top scoring BM25 and Power normalization relevancé/e now detect a distinct difference between the power
feedback runs. BM25 is clearly outperforming powenormalization runs and the relevance feedback runs.
normalization. It will be interesting to optimize theThe power norm consistently does better as more terms
Threskx and Thresg, values in post-hoc testing, toare added. Adding five terms outperforms the baseline;
see if BM25 is getting its advantage by merely readding ten terms outperforms adding only five terms.
trieving more documents. The strong showing on la$¥e plan post-hoc testing to take this strategy further to
year's metric (Estimate Recall at B) leads us to beliew#etermine where the performance peaks and begins to
that BM25 will likely to continue to outperform power degrade.
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Fig. 9.

BM25 Relevance Feedback Run Comparison - Adding additional terms

0.3500

BM25 - Summary of Metrics

0.3000

0.2500

0.2000

0.1500

0.1000

M BM25 Baseline
B BM25 5 Terms

0.0500

0.0000

BM25 10 Terms

With BM25, however, we have a murkier situation[?]
The baseline run actually outperforms the relevance
feedback runs when the metrics from 2007 are used fo
comparison (Estimated Recall and Precision/3t It
also strongly outperforms the other runs when Recall
at B is measured. The run with ten terms added does
best of the competition metrics for 2008 (F1, Recal[f”
and Precision aK), but this could be due to the larger
averageK values. Perhaps most interesting of all is that
the run with five terms added does best when the me&h
average precision metrics are observed.

9 CONCLUSIONS 2
Our experiments show that the Distributed EDLSI ap-
proach is promising, but it is not yet fully maturej7
It soundly outperformed the vector baseline approach,
but it could not improve upon a basic BM25 syste
Generally BM25 was the most consistent performin
algorithm across all of the techniques we tested. BM25b
outperformed power normalization on both the ad hoc
and the relevance feedback tasks, and it outperfor
Distributed EDLSI on the ad hoc task. Post analysis wi
be done to optimize the parameter settings for all three
approaches.

8]

[20]
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