Recurrences
Divide and Conquer Algorithms

- Insertion Sort – *incremental*
- Sort the sub-array from $A[1...j-1]$ and insert $A[j]$ in its right position
- Divide and Conquer – *recursive* structure
- *Key idea*: Solve sub-problems recursively, then combine these solutions.
MERGE-SORT(A, p, r)

if $p < r$ // check for base case

\[q = \lfloor (p + r)/2 \rfloor \] // divide

MERGE-SORT(A, p, q) // conquer

MERGE-SORT(A, q + 1, r) // conquer

MERGE(A, p, q, r) // combine
Divide-and-Conquer

Divide the problem into a number of subproblems.

Conquer the subproblems by solving them recursively. When the problem is small enough, solving it becomes straightforward.

Combine the solutions to the subproblems.
Merge Sort

• Example of divide and conquer

Divide the n-element sequence into $n/2$ elements

Conquer the subproblems by recursively using merge sort

Combine the two sorted subsequences to produce the sorted
Merge Sort (contd.)

• Recursion “bottoms out” when the sequence is of length 1.

• Key operation – **Combine** step

• We perform this using the procedure
 MERGE\((A,p,q,r)\)

• MERGE –

INPUT: \(A\) is an array, \(p \leq q < r\) are indices such that \(A[p..q]\) and \(A[q+1,r]\) are sorted

OUTPUT: Sorted merged array \(A[p,r]\)
How to Merge??

• 2 sorted piles of cards face up on the table
• Remove the smaller cards and place face down in the output pile
• Repeat until input piles are empty
• How long does this take??
\textbf{Merge}(A, p, q, r)

\[n_1 = q - p + 1 \]
\[n_2 = r - q \]
let \(L[1..n_1 + 1] \) and \(R[1..n_2 + 1] \) be new arrays

\textbf{for} \(i = 1 \) to \(n_1 \)
\hspace{1cm} \(L[i] = A[p + i - 1] \)
\textbf{for} \(j = 1 \) to \(n_2 \)
\hspace{1cm} \(R[j] = A[q + j] \)
\(L[n_1 + 1] = \infty \)
\(R[n_2 + 1] = \infty \)
\(i = 1 \)
\(j = 1 \)
\textbf{for} \(k = p \) to \(r \)
\hspace{1cm} \textbf{if} \(L[i] \leq R[j] \)
\hspace{1.5cm} \(A[k] = L[i] \)
\hspace{1.5cm} \(i = i + 1 \)
\hspace{1cm} \textbf{else} \(A[k] = R[j] \)
\hspace{1.5cm} \(j = j + 1 \)
Merging

- $n = r - p + 1$ time
- $\Theta(n)$ time
Figure 2.3 The operation of lines 10–17 in the call MERGE(A, 9, 12, 16), when the subarray A[9..16] contains the sequence (2, 4, 5, 7, 1, 2, 3, 6). After copying and inserting sentinels, the array \(L \) contains \(\{2, 4, 5, 7, \infty\} \), and the array \(R \) contains \(\{1, 2, 3, 6, \infty\} \). Lightly shaded positions in \(A \) contain their final values, and lightly shaded positions in \(L \) and \(R \) contain values that have yet to be copied back into \(A \). Taken together, the lightly shaded positions always comprise the values originally in \(A[9..16] \), along with the two sentinels. Heavily shaded positions in \(A \) contain values that will be copied over, and heavily shaded positions in \(L \) and \(R \) contain values that have already been copied back into \(A \). (a)-(h) The arrays \(A, L, \) and \(R \), and their respective indices \(k, i, \) and \(j \) prior to each iteration of the loop of lines 12–17. (i) The arrays and indices at termination. At this point, the subarray in \(A[9..16] \) is sorted, and the two sentinels in \(L \) and \(R \) are the only two elements in these arrays that have not been copied into \(A \).
Figure 2.4 The operation of merge sort on the array $A = (5, 2, 4, 7, 1, 3, 2, 6)$. The lengths of the sorted sequences being merged increase as the algorithm progresses from bottom to top.
Analyzing Divide-and-conquer algorithms

• So how do we analyze a recursive algorithm?
• **Recurrence Relation** – equation describing the running time of a problem of size n in terms of running time of smaller inputs

• If we divide the original program into a subproblems each of which is $1/b$ the size of original,

\[
T_n = \begin{cases}
\Theta(1) & \text{if } n \leq c \\
a T(n/b) + D(n) + C(n) & \text{otherwise}
\end{cases}
\]
Analyzing Merge Sort

• Simplify analysis – assume even number of elements
• Merge sort on 1 element – constant time
• For n>1 element:
 – **Divide:** Dividing down the middle takes const time
 \[D(n) = \theta(1) \]
 – **Conquer:** Two subproblems each of size n/2 take
 \[2T(n/2) \]
 – **Combine:** The merge procedure takes \(\theta(n) \)
Analyzing Merge Sort

Divide-and-Conquer

\[T_n = \begin{cases}
\Theta(1) & \text{if } n \leq c \\
 a \ T(n/b) + D(n) + C(n) & \text{otherwise}
\end{cases} \]

Merge Sort

\[T_n = \begin{cases}
\Theta(1) & \text{if } n = 1 \\
2 \ T(n/2) + \Theta(n) & \text{if } n > 1
\end{cases} \]

• D(n) is \(\theta(1) \) and C(n) is \(\theta(n) \) for Merge Sort
• How do we evaluate such an expression??

• \(T_n = \theta(n \ lg n) \)

• We will look at a formal method (Master Theorem)
• But let's try and reason this
Reasoning $\theta(n \lg n)$

• Let’s rewrite

$$T_n = \begin{cases}
\Theta(1) & \text{if } n = 1 \\
\frac{1}{2} T(n/2) + \Theta(n) & \text{if } n > 1
\end{cases}$$

• As

$$T_n = \begin{cases}
c & \text{if } n = 1 \\
2 T(n/2) + cn & \text{if } n > 1
\end{cases}$$

• How do we solve this?
Figure 2.5 The construction of a recursion tree for the recurrence $T(n) = 2T(n/2) + cn$. Part (a) shows $T(n)$, which is progressively expanded in (b)–(d) to form the recursion tree. The fully expanded tree in part (d) has $\lg n + 1$ levels (i.e., it has height $\lg n$, as indicated), and each level contributes a total cost of cn. The total cost, therefore, is $cn \lg n + cn$, which is $\Theta(n \lg n)$.
Reasoning $\Theta(n \lg n)$

• Each level has a total cost cn
• In general, level i has 2^i nodes each contributing a cost of $cn/2^i$ for a total cost of cn
• How many levels does this tree have?
 • Levels = $\lg n$
• Total cost = $cn \lg n$
How fast?

• So how does $\theta(n \lg n)$ for merge sort compare to $\theta(n^2)$ for insertion sort?

• Way better for large n!
Solving Recurrences

• The approach we just took – *Recursion Tree*
• Sum the costs within each level to obtain a set of per-level costs.
• Sum these to get total cost
Another example

- \(T(n) = T(n/3) + T(2n/3) + cn \)
Another Example

Figure 4.2 A recursion tree for the recurrence $T(n) = T(n/3) + T(2n/3) + cn$.

Total: $O(n \log n)$
Master Method

• “Cookbook” for solving recurrences of the form:
 \[T(n) = a \times T(n/b) + f(n) \]
Where,

a ≥ 1 and b > 1 and f(n) is an asymptotically positive function
Master Theorem

\[T(n) = a \, T\left(\frac{n}{b}\right) + f(n) \quad \text{where} \quad a \geq 1, \, b > 1. \]

Case 1

\[f(n) = \mathcal{O} \left(n^{\log_b(a) - \varepsilon} \right) \quad \text{then} \quad T(n) = \Theta \left(n^{\log_b a} \right). \]

Case 2

\[f(n) = \Theta \left(n^{\log_b a \log^k n} \right) \quad \text{then} \quad T(n) = \Theta \left(n^{\log_b a \log^{k+1} n} \right). \]

Case 3

\[f(n) = \Omega \left(n^{\log_b a + \varepsilon} \right) \quad \& \quad a f \left(\frac{n}{b} \right) \leq c f(n) \quad \text{then} \quad T(n) = \Theta \left(f(n) \right). \]

For all cases, \(\varepsilon > 0 \) and \(c < 1 \).
Examples of the Master Method

Example

\[T(n) = 8T \left(\frac{n}{2} \right) + 1000n^2 \]

As one can see in the formula above, the variables get the following values:

\[a = 8, b = 2, f(n) = 1000n^2, \log_b a = \log_2 8 = 3 \]

Now we have to check that the following equation holds:

\[f(n) = \mathcal{O} \left(n^{\log_b a - \varepsilon} \right) \]
\[1000n^2 = \mathcal{O} \left(n^{3 - \varepsilon} \right) \]

If we choose \(\varepsilon = 1 \), we get:

\[1000n^2 = \mathcal{O} \left(n^{3-1} \right) = \mathcal{O} \left(n^2 \right) \]

Since this equation holds, the first case of the master theorem applies to the given recurrence relation, thus resulting in the conclusion:

\[T(n) = \Theta \left(n^{\log_b a} \right) . \]

If we insert the values from above, we finally get:

\[T(n) = \Theta \left(n^3 \right) . \]

Thus the given recurrence relation \(T(n) \) was in \(\Theta(n^3) \).

(This result is confirmed by the exact solution of the recurrence relation, which is \(T(n) = 1001n^3 - 1000n^2 \), assuming \(T(1) = 1 \)).
Examples of the Master Method

Example

\[T(n) = 2T \left(\frac{n}{2} \right) + 10n \]

As we can see in the formula above the variables get the following values:

\[a = 2, b = 2, k = 0, f(n) = 10n, \log_b a = \log_2 2 = 1 \]

Now we have to check that the following equation holds (in this case k=0):

\[f(n) = \Theta \left(n^{\log_b a} \right) \]

If we insert the values from above, we get:

\[10n = \Theta \left(n^1 \right) = \Theta \left(n \right) \]

Since this equation holds, the second case of the master theorem applies to the given recurrence relation, thus resulting in the conclusion:

\[T(n) = \Theta \left(n^{\log_b a} \log n \right). \]

If we insert the values from above, we finally get:

\[T(n) = \Theta \left(n \log n \right). \]

Thus the given recurrence relation \(T(n) \) was in \(\Theta(n \log n) \).
Examples of the Master Method

Example

\[T(n) = 2T\left(\frac{n}{2}\right) + n^2 \]

As we can see in the formula above the variables get the following values:

\[a = 2, \ b = 2, \ f(n) = n^2, \ \log_b a = \log_2 2 = 1 \]

Now we have to check that the following equation holds:

\[f(n) = \Omega\left(n^{\log_b a + \epsilon}\right) \]

If we insert the values from above, and choose \(\epsilon = 1 \), we get:

\[n^2 = \Omega\left(n^{1+1}\right) = \Omega\left(n^2\right) \]

Since this equation holds, we have to check the second condition, namely if it is true that:

\[af\left(\frac{n}{b}\right) \leq cf(n) \]

If we insert once more the values from above, we get:

\[2\left(\frac{n}{2}\right)^2 \leq cn^2 \iff \frac{1}{2}n^2 \leq cn^2 \]

If we choose \(c = \frac{1}{2} \), it is true that:

\[\frac{1}{2}n^2 \leq \frac{1}{2}n^2 \forall n \geq 1 \]

So it follows:

\[T(n) = \Theta(f(n)) \]

If we insert once more the necessary values, we get:

\[T(n) = \Theta(n^2) \]

Thus the given recurrence relation \(T(n) \) was in \(\Theta(n^2) \), that complies with the \(f(n) \) of the original formula.