Asymptotic Notation
O-notation

\[O(g(n)) = \{ f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \} . \]

\(g(n) \) is an *asymptotic upper bound* for \(f(n) \).

If \(f(n) \in O(g(n)) \), we write \(f(n) = O(g(n)) \).
Example: \(2n^2 = O(n^3)\), with \(c = 1\) and \(n_0 = 2\).

Examples of functions in \(O(n^2)\):

\[
\begin{align*}
n^2 \\
n^2 + n \\
n^2 + 1000n \\
1000n^2 + 1000n
\end{align*}
\]

Also,

\[
\begin{align*}
n \\
n/1000 \\
n^{1.99999} \\
n^2/\log \log \log n
\end{align*}
\]
Ω-notation

$\Omega(g(n)) = \{ f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \}$.

$g(n)$ is an asymptotic lower bound for $f(n)$.
Example: $\sqrt{n} = \Omega(\lg n)$, with $c = 1$ and $n_0 = 16$.

Examples of functions in $\Omega(n^2)$:

\begin{align*}
 n^2 \\
 n^2 + n \\
 n^2 - n \\
 1000n^2 + 1000n \\
 1000n^2 - 1000n \\
 Also, \\
 n^3 \\
 n^{2.00001} \\
 n^2 \lg \lg \lg n \\
 2^{2^n}
\end{align*}
\(\Theta(g(n)) = \{ f(n) : \text{there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \text{ for all } n \geq n_0 \} \).

\(g(n) \) is an asymptotically tight bound for \(f(n) \).

Example: \(n^2/2 - 2n = \Theta(n^2) \), with \(c_1 = 1/4, c_2 = 1/2, \) and \(n_0 = 8 \).

Theorem

\(f(n) = \Theta(g(n)) \) if and only if \(f = O(g(n)) \) and \(f = \Omega(g(n)) \).
A way to compare “sizes” of functions:

\[O \supseteq \Omega \supseteq \Theta \supseteq o \supseteq o \supseteq o \]