Elementary Graph Algorithms
What is a graph?

A graph G is represented as $G = (V,E)$

- V is the set of vertices
- E is the set of edges where an edge connects two vertices (v_i,v_j) together
- An edge may be directed or undirected
Representation of Graphs

• 2 Standard Representations:
 – Adjacency Lists
 Compact way to represent \textit{sparse} graphs.
 Sparse - $|E| << |V|^2$
 – Adjacency Matrix
 Good representation for \textit{dense} graphs
 Dense - $|E| \sim |V|^2$
Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G having five vertices and seven edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.
Figure 22.2 Two representations of a directed graph. (a) A directed graph G having six vertices and eight edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.
Weighted Graphs

• *Weight function* $w: E \rightarrow \mathbb{R}$

• Weight can be stored in the adjacency list

• Weight can also be stored in the matrix with a weight 0 representing the non-existence of an edge
Breadth-first search

• Given G = (V,E) and a source vertex s
• Goal – Discover every vertex in G ‘reachable’ from s
• Compute the distance from s to each reachable vertex
• Produce a Breadth-first tree with s as the root, containing all reachable vertices
• The path from s to v represents the shortest path from s to v
Use of Colors

BFS uses colors to keep track of the discovery process:

• White – Undiscovered vertex
• Black – Discovered vertex all of whose adjacent vertices have also been discovered
• Grey – Discovered vertex some of whose adjacent vertices are white
More definitions

• When scanning a discovered node v’s adjacency list, if we come across a white node w
• Add edge (v, w) to the tree.
• Call v the predecessor of $\pi(w) \leftarrow v$
• $d(w)$ – the distance from s
BFS(G, s)

1. for each vertex $u \in V[G] - \{s\}$
2. \hspace{1em} do $color[u] \leftarrow$ WHITE
3. \hspace{2em} $d[u] \leftarrow \infty$
4. \hspace{2em} $\pi[u] \leftarrow$ NIL
5. \hspace{1em} $color[s] \leftarrow$ GRAY
6. \hspace{1em} $d[s] \leftarrow 0$
7. \hspace{1em} $\pi[s] \leftarrow$ NIL
8. \hspace{1em} $Q \leftarrow \emptyset$
9. \hspace{1em} ENQUEUE(Q, s)
10. while $Q \neq \emptyset$
11. \hspace{1em} do $u \leftarrow$ DEQUEUE(Q)
12. \hspace{2em} for each $v \in \text{Adj}[u]$
13. \hspace{3em} do if $color[v] = \text{WHITE}$
14. \hspace{4em} then $color[v] \leftarrow$ GRAY
15. \hspace{4em} $d[v] \leftarrow d[u] + 1$
16. \hspace{4em} $\pi[v] \leftarrow u$
17. \hspace{4em} ENQUEUE(Q, v)
18. \hspace{1em} $color[u] \leftarrow$ BLACK
Figure 22.3 The operation of BFS on an undirected graph. Tree edges are shown shaded as they are produced by BFS. Within each vertex u is shown $d[u]$. The queue Q is shown at the beginning of each iteration of the while loop of lines 10–18. Vertex distances are shown next to vertices in the queue.
Running Time

- Every vertex is enqueued at most once and so dequeued at most once.
- Total $O(V)$
- Each adjacency list scanned at most once
- Sum of the lists – $O(E)$
- Total time $O(V+E)$
Shortest Paths

• $\delta(s,v)$ shortest path from s to v
• Minimum number of edges

Lemma – For any edge (u,v) in E,

$$\delta(s,v) \leq \delta(s,u) + 1$$

• We want to show that BFS computes $d[v] = \delta(s,v)$ for every vertex in V
Lemma: Upon termination of BFS, for each vertex \(v \) in \(V \), \(d[v] \geq \delta(s,v) \)

Proof: Induction on number of ENQUEUE’s

Basis: After \(s \) in enqueued \(d[s]=0=\delta(s,s) \)

Inductive Step: Consider a white vertex \(v \) discovered during a search from some \(u \).

From hypothesis, \(d[u] \geq \delta(s,u) \)

And from the other lemma, \(d[v]=d[u]+1 \)

\[
\geq \delta(s,u)+1 \\
\geq \delta(s,v)
\]
Shortest Path

Lemma: Suppose the BFS queue contains \(<v_1, v_2, ..., v_r> \), then \(d[v_i] \leq d[v_{i+1}] \)

Monotonically increasing \(d \) values are in the queue over time
Correctness

Theorem: BFS run at s will discover every reachable vertex v and upon termination, $d[v]=\delta(s,v)$. Moreover, for any vertex v reachable from s, one of the shortest from s to v is the shortest path from s to $\pi(v)$ followed by the edge $(\pi(v),v)$.
PRINT-PATH\((G, s, v)\)

1 \hspace{1em} \textbf{if} \hspace{0.5em} v = s
2 \hspace{1em} \textbf{then} \hspace{0.5em} \text{print } s
3 \hspace{1em} \textbf{else} \hspace{0.5em} \textbf{if} \hspace{0.5em} \pi[v] = \text{NIL}
4 \hspace{1em} \textbf{then} \hspace{0.5em} \text{print "no path from" } s \text{ "to" } v \text{ "exists"}
5 \hspace{1em} \textbf{else} \hspace{0.5em} \text{PRINT-PATH}\((G, s, \pi[v])\)
6 \hspace{1em} \text{print } v