All-pairs Shortest Paths
Introduction

Given a directed graph \(G = (V, E) \), weight function \(w : E \to \mathbb{R} \), \(|V| = n \).
Goal: create an \(n \times n \) matrix of shortest-path distances \(\delta(u, v) \).
Could run BELLMAN-FORD once from each vertex:

- \(O(V^2E) \)—which is \(O(V^4) \) if the graph is dense \((E = \Theta(V^2)) \).

If no negative-weight edges, could run Dijkstra’s algorithm once from each vertex:

- \(O(VE \lg V) \) with binary heap—\(O(V^3 \lg V) \) if dense,
- \(O(V^2 \lg V + VE) \) with Fibonacci heap—\(O(V^3) \) if dense.

We’ll see how to do in \(O(V^3) \) in all cases, with no fancy data structure.
Assume that G is given as adjacency matrix of weights: $W = (w_{ij})$, with vertices numbered 1 to n.

$$w_{ij} = \begin{cases}
0 & \text{if } i = j, \\
\text{weight of } (i, j) & \text{if } i \neq j, (i, j) \in E, \\
\infty & \text{if } i \neq j, (i, j) \notin E.
\end{cases}$$

Output is matrix $D = (d_{ij})$, where $d_{ij} = \delta(i, j)$.

Will use dynamic programming at first.
Optimal substructure: Recall: subpaths of shortest paths are shortest paths.

Recursive solution: Let $l_{ij}^{(m)}$ = weight of shortest path $i \sim j$ that contains $\leq m$ edges.

- $m = 0$
 \[\Rightarrow \text{there is a shortest path } i \sim j \text{ with } \leq m \text{ edges if and only if } i = j \]
 \[\Rightarrow l_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j, \\ \infty & \text{if } i \neq j. \end{cases} \]
Recursive solution

\[m \geq 1 \]
\[\Rightarrow l_{ij}^{(m)} = \min \left(l_{ij}^{(m-1)}, \min_{1 \leq k \leq n} \{ l_{ik}^{(m-1)} + w_{kj} \} \right) \]

\((k)\) is all possible predecessors of \(j\)

\[= \min_{1 \leq k \leq n} \{ l_{ik}^{(m-1)} + w_{kj} \} \]

since \(w_{jj} = 0\) for all \(j\).

- Observe that when \(m = 1\), must have \(l_{ij}^{(1)} = w_{ij}\).

Conceptually, when the path is restricted to at most 1 edge, the weight of the shortest path \(i \leadsto j\) must be \(w_{ij}\).

And the math works out, too:
\[l_{ij}^{(1)} = \min_{1 \leq k \leq n} \{ l_{ik}^{(0)} + w_{kj} \} \]
\[= l_{ii}^{(0)} + w_{ij} \]
\[= w_{ij}. \]

All simple shortest paths contain \(\leq n - 1\) edges
\[\Rightarrow \delta(i, j) = l_{ij}^{(n-1)} = l_{ij}^{(n)} = l_{ij}^{(n+1)} = \ldots \]
Compute a solution bottom-up: Compute $L^{(1)}, L^{(2)}, \ldots, L^{(n-1)}$.

Start with $L^{(1)} = W$, since $l_{ij}^{(1)} = w_{ij}$.

Go from $L^{(m-1)}$ to $L^{(m)}$.

\textbf{EXTEND}(L, W, n)

create L', an $n \times n$ matrix

for $i \leftarrow 1$ to n

\hspace{1em} do for $j \leftarrow 1$ to n

\hspace{2em} do $l'_{ij} \leftarrow \infty$

\hspace{3em} for $k \leftarrow 1$ to n

\hspace{4em} do $l'_{ij} \leftarrow \min(l'_{ij}, l_{ik} + w_{kj})$

return L'
Bottom up computation

\texttt{SLOW-APSP}(W, n)
\begin{align*}
L^{(1)} & \leftarrow W \\
\text{for } m & \leftarrow 2 \text{ to } n - 1 \\
& \quad \text{do } L^{(m)} \leftarrow \text{EXTEND}(L^{(m-1)}, W, n) \\
\text{return } L^{(n-1)}
\end{align*}

\textit{Time:}

\begin{itemize}
 \item \texttt{EXTEND}: $\Theta(n^3)$.
 \item \texttt{SLOW-APSP}: $\Theta(n^4)$.
\end{itemize}
Observation: EXTEND is like matrix multiplication:

\[
\begin{align*}
L & \rightarrow A \\
W & \rightarrow B \\
L' & \rightarrow C \\
\text{min} & \rightarrow + \\
+ & \rightarrow \cdot \\
\infty & \rightarrow 0
\end{align*}
\]

create \(C \), an \(n \times n \) matrix

\[
\text{for } i \leftarrow 1 \text{ to } n \\
\quad \text{do for } j \leftarrow 1 \text{ to } n \\
\quad \quad \text{do } c_{ij} \leftarrow 0 \\
\quad \quad \text{for } k \leftarrow 1 \text{ to } n \\
\quad \quad \quad \text{do } c_{ij} \leftarrow c_{ij} + a_{ik} \cdot b_{kj}
\]

\[
\text{EXTEND}(L, W, n)
\]

create \(L' \), an \(n \times n \) matrix

\[
\text{for } i \leftarrow 1 \text{ to } n \\
\quad \text{do for } j \leftarrow 1 \text{ to } n \\
\quad \quad \text{do } l'_{ij} \leftarrow \infty \\
\quad \quad \text{for } k \leftarrow 1 \text{ to } n \\
\quad \quad \quad \text{do } l'_{ij} \leftarrow \min(l'_{ij}, l_{ik} + w_{kj})
\]

return \(L' \)

So, we can view EXTEND as just like matrix multiplication!
Why do we care?
Because our goal is to compute $L^{(n-1)}$ as fast as we can. Don’t need to compute all the intermediate $L^{(1)}, L^{(2)}, L^{(3)}, \ldots, L^{(n-2)}$.
Suppose we had a matrix A and we wanted to compute A^{n-1} (like calling EXTEND $n-1$ times).
Could compute A, A^2, A^4, A^8, \ldots.
If we knew $A^m = A^{n-1}$ for all $m \geq n - 1$, could just finish with A^r, where r is the smallest power of 2 that’s $\geq n - 1$. ($r = 2^{\lfloor \lg(n-1) \rfloor}$)

FASTER-APSP(W, n)
$L^{(1)} \leftarrow W$
$m \leftarrow 1$
while $m < n - 1$

\hspace{1em} do $L^{(2m)} \leftarrow \text{EXTEND}(L^{(m)}, L^{(m)}, n)$

\hspace{1.5em} $m \leftarrow 2m$

return $L^{(m)}$

OK to overshoot, since products don’t change after $L^{(n-1)}$.

Time: $\Theta(n^3 \lg n)$.
Floyd-Warshall Algorithm

A different dynamic-programming approach.

For path $p = (v_1, v_2, \ldots, v_l)$, an intermediate vertex is any vertex of p other than v_1 or v_l.

Let $d_{ij}^{(k)}$ = shortest-path weight of any path $i \leadsto j$ with all intermediate vertices in $\{1, 2, \ldots, k\}$.

Consider a shortest path $i \xrightarrow{p} j$ with all intermediate vertices in $\{1, 2, \ldots, k\}$:

- If k is not an intermediate vertex, then all intermediate vertices of p are in $\{1, 2, \ldots, k-1\}$.
- If k is an intermediate vertex:

\[
\begin{array}{c}
 i \\
 \xrightarrow{p_1} \\
 \xrightarrow{k} \\
 \xrightarrow{p_2} \\
 j
\end{array}
\]

all intermediate vertices in $\{1, 2, \ldots, k-1\}$
Recursive formulation

\[d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min (d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}) & \text{if } k \geq 1. \end{cases} \]

(Have \(d_{ij}^{(0)} = w_{ij} \) because can’t have intermediate vertices \(\Rightarrow \leq 1 \) edge.)

Want \(D^{(n)} = (d_{ij}^{(n)}) \), since all vertices numbered \(\leq n \).
Compute in increasing order of k:

FLOYD-WARSHALL (W, n)

$D^{(0)} \leftarrow W$

for $k \leftarrow 1$ to n

 do for $i \leftarrow 1$ to n

 do for $j \leftarrow 1$ to n

 do $d_{ij}^{(k)} \leftarrow \min (d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})$

return $D^{(n)}$

Can drop superscripts. (See Exercise 25.2-4 in text.)

Time: $\Theta(n^3)$.
Transitive closure

Given $G = (V, E)$, directed.
Compute $G^* = (V, E^*)$.

- $E^* = \{(i, j) : \text{there is a path } i \leadsto j \text{ in } G\}$.

Could assign weight of 1 to each edge, then run FLOYD-WARSHALL.

- If $d_{ij} < n$, then there is a path $i \leadsto j$.
- Otherwise, $d_{ij} = \infty$ and there is no path.

Simpler way: Substitute other values and operators in FLOYD-WARSHALL.

- Use unweighted adjacency matrix
- $\min \to \lor$ (OR)
- $+$ $\to \land$ (AND)
- $t_{ij}^{(k)} = \begin{cases} 1 & \text{if there is path } i \leadsto j \text{ with all intermediate vertices in } \{1, 2, \ldots, k\}, \\ 0 & \text{otherwise}. \end{cases}$
- $t_{ij}^{(0)} = \begin{cases} 0 & \text{if } i \neq j \text{ and } (i, j) \notin E, \\ 1 & \text{if } i = j \text{ or } (i, j) \in E. \end{cases}$
- $t_{ij}^{(k)} = t_{ij}^{(k-1)} \lor (t_{ik}^{(k-1)} \land t_{kj}^{(k-1)})$.
Transitive closure

Algorithm

```
TRANSITIVE-CLOSURE(E, n)
for i ← 1 to n
    do for j ← 1 to n
        do if i = j or (i, j) ∈ E[G]
            then t_{ij}^{(0)} ← 1
            else t_{ij}^{(0)} ← 0
    for k ← 1 to n
        do for i ← 1 to n
            do for j ← 1 to n
                do t_{ij}^{(k)} ← t_{ij}^{(k-1)} \lor (t_{ik}^{(k-1)} \land t_{kj}^{(k-1)})

return T^{(n)}
```

Time: $\Theta(n^3)$, but simpler operations than FLOYD-WARSHALL.
Johnson’s Algorithm

Idea: If the graph is sparse, it pays to run Dijkstra’s algorithm once from each vertex.

If we use a Fibonacci heap for the priority queue, the running time is down to \(O(V^2 \log V + VE) \), which is better than Floyd-Warshall’s \(\Theta(V^3) \) time if \(E = o(V^2) \).

But Dijkstra’s algorithm requires that all edge weights be nonnegative.

Donald Johnson figured out how to make an equivalent graph that _does_ have all edge weights \(\geq 0 \).
Compute a new weight function \(\hat{w} \) such that

1. For all \(u, v \in V \), \(p \) is a shortest path \(u \leadsto v \) using \(w \) if and only if \(p \) is a shortest path \(u \leadsto v \) using \(\hat{w} \).
2. For all \((u, v) \in E \), \(\hat{w}(u, v) \geq 0 \).

Property (1) says that it suffices to find shortest paths with \(\hat{w} \). Property (2) says we can do so by running Dijkstra’s algorithm from each vertex.

How to come up with \(\hat{w} \)?

Lemma shows it’s easy to get property (1):
Lemma (Reweighting doesn’t change shortest paths)

Given a directed, weighted graph $G = (V, E)$, $w : E \rightarrow \mathbb{R}$. Let h be any function such that $h : V \rightarrow \mathbb{R}$. For all $(u, v) \in E$, define

$$\hat{w}(u, v) = w(u, v) + h(u) - h(v).$$

Let $p = (v_0, v_1, \ldots, v_k)$ be any path $v_0 \Rightarrow v_k$.

Then, p is a shortest path $v_0 \Rightarrow v_k$ with w if and only if p is a shortest path $v_0 \Rightarrow v_k$ with \hat{w}. (Formally, $w(p) = \hat{\delta}(v_0, v_k)$ if and only if $\hat{w} = \hat{\delta}(v_0, v_k)$, where $\hat{\delta}$ is the shortest-path weight with \hat{w}.)

Also, G has a negative-weight cycle with w if and only if G has a negative-weight cycle with \hat{w}.
So, now to get property (2), we just need to come up with a function $h : V \rightarrow \mathbb{R}$ such that when we compute $\hat{w}(u, v) = w(u, v) + h(u) - h(v)$, it’s ≥ 0.

- $G' = (V', E')$
- $V' = V \cup \{s\}$, where s is a new vertex.
- $E' = E \cup \{(s, v) : v \in V\}$.
- $w(s, v) = 0$ for all $v \in V$.
- Since no edges enter s, G' has the same set of cycles as G. In particular, G' has a negative-weight cycle if and only if G does.

Define $h(v) = \delta(s, v)$ for all $v \in V$.
Claim
\[\hat{w}(u, v) = w(u, v) + h(u) - h(v) \geq 0. \]

Proof By the triangle inequality,
\[
\delta(s, v) \leq \delta(s, u) + w(u, v) \\
h(v) \leq h(u) + w(u, v).
\]
Therefore, \(w(u, v) + h(u) - h(v) \geq 0. \)
Johnson’s algorithm

form G'
run BELLMAN-FORD on G' to compute $\delta(s, v)$ for all $v \in V$
if BELLMAN-FORD returns FALSE
then G has a negative-weight cycle
else
compute $\hat{w}(u, v) = w(u, v) + \delta(s, u) - \delta(s, v)$ for all $(u, v) \in E$
for each vertex $u \in V$
do run Dijkstra’s algorithm from u using weight function \hat{w}
to compute $\hat{\delta}(u, v)$ for all $v \in V$
for each vertex $v \in V$
do \hat{D} Compute entry d_{uv} in matrix \hat{D}
$$d_{uv} = \hat{\delta}(u, v) + \delta(s, v) - \delta(s, u)$$
because if p is a path $u \leadsto v$,
then $\hat{w}(p) = w(p) + h(u) - h(v)$

Time:
• $\Theta(V + E)$ to compute G'.
• $O(VE)$ to run BELLMAN-FORD.
• $\Theta(E)$ to compute \hat{w}.
• $O(V^2 \lg V + VE)$ to run Dijkstra’s algorithm $|V|$ times (using Fibonacci heap).
• $\Theta(V^2)$ to compute \hat{D} matrix.

Total: $O(V^2 \lg V + VE)$.
Figure 25.6 Johnson's all-pairs shortest-paths algorithm run on the graph of Figure 25.1
(a) The graph G' with the original weight function w. The new vertex s is black. With each vertex v is $h(v) = \delta(s, v)$.
(b) Each edge (u, v) is reweighted with weight function $\hat{w}(u, v) = w(u, v) + h(u) - h(v)$.
(c)–(g) The result of running Dijkstra's algorithm on each vertex of G using weight function \hat{w}. In each part, the source vertex u is black, and shaded edges are in the shortest-paths tree computed by the algorithm. Within each vertex v are the values $\hat{\delta}(u, u)$ and $\hat{\delta}(u, v)$, separated by a slash. The value $d_{uv} = \delta(u, v)$ is equal to $\hat{\delta}(u, v) + h(v) - h(u)$.